【题目】在三棱柱
中,底面
是等腰三角形,且
,侧面
是菱形,
,平面
平面
,点
是
的中点.
![]()
(1)求证:
;
(2)求直线
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆
,点
,
是圆
上任意一点,线段
的垂直平分线与半径
相交于点
,设点
的轨迹为曲线
。
(1)求曲线
的方程;
(2)若
,设过点
的直线
与曲线
分别交于点
,其中
,求证:直线
必过
轴上的一定点。(其坐标与
无关)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.
镇有基层干部60人,
镇有基层干部60人,
镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从
三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,
,绘制成如图所示的频率分布直方图.
![]()
(1)求这40人中有多少人来自
镇,并估计
三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)
(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从
三镇的所有基层干部中随机选取3人,记这3人中工作出色的人数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市自2014年至2019年每年年初统计得到的人口数量如表所示.
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人数(单位:万) | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)设第
年的人口数量为
(2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;
(2)研究统计人员用函数
拟合该城市的人口数量,其中
的单位是年.假设2014年初对应
,
的单位是万.设
的反函数为
,求
的值(精确到0.1),并解释其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国国际智能产业博览会(智博会)每年在重庆市举办一届,每年参加服务的志愿者分“嘉宾”、“法医”等若干小组
年底,来自重庆大学、西南大学、重庆医科大学、西南政法大学的500名学生在重庆科技馆多功能厅参加了“志愿者培训”,如图是四所大学参加培训人数的不完整条形统计图,现用分层抽样的方法从中抽出50人作为2019年中国国际智博会服务的志愿者.
![]()
(1)若“嘉宾”小组需要2名志愿者,求这2人分别来自不同大学的概率(结果用分数表示)
(2)若“法医”小组的3名志愿者只能从重庆医科大学或西南政法大学抽出,用
表示抽出志愿者来自重庆医科大学的人数,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到直线
的距离比到定点
的距离大1.
(1)求动点
的轨迹
的方程.
(2)若
为直线
上一动点,过点
作曲线
的两条切线
,
,切点为
,
,
为
的中点.
①求证:
轴;
②直线
是否恒过一定点?若是,求出这个定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
上任意一点,
,且点
为线段
的中点.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)若
为点
关于原点
的对称点,过
的直线交曲线
于
、
两点,直线
交直线
于点
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com