精英家教网 > 高中数学 > 题目详情
求证:a2+b2+c2≥ab+bc+ca.
【答案】分析:从不等式的左边入手,左边对应的代数式的二倍,分别写成两两相加的形式,在三组相加的式子中分别用均值不等式,整理成最简形式,得到右边的2倍,两边同时除以2,得到结果.
解答:证明:a2+b2+c2
=(a2+b2+c2+a2+b2+c2
(2ab+2ca+2bc)=ab+bc+ca.
∴a2+b2+c2≥ab+bc+ca.
点评:本题考查均值不等式的应用,考查不等式的证明方法,是一个基础题,这种题目常常考虑分拆后利用基本不等式,因为题目分拆后才符合均值不等式的表现形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:在△ABC中,AB=c,BC=a,AC=b,AB上的中线CD=m,求证:a2+b2=
12
c2+2m2

查看答案和解析>>

科目:高中数学 来源: 题型:

例2.求证:
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c)

查看答案和解析>>

科目:高中数学 来源: 题型:

通常用a、b、c分别表示△ABC的三个内角A,B,C所对边的边长,R表示△ABC的外接圆半径.
(1)如图,在以O为圆心、直径为8的⊙O中,BC和BA是⊙O的弦,其中BC=4,∠ABC=45°,求弦AB的长;
(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2

查看答案和解析>>

科目:高中数学 来源: 题型:

(一)已知a,b,c∈R+
①求证:a2+b2+c2≥ab+bc+ac;
②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.
(二)已知a,b,x,y∈R+
①求证:
x2
a
+
y2
b
(x+y)2
a+b

②利用①的结论求
1
2x
+
9
1-2x
(0<x<
1
2
)
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a、b、c满足ab+bc+ca=1,求证:a2+b2+c2≥1.

查看答案和解析>>

同步练习册答案