精英家教网 > 高中数学 > 题目详情
9.复数z=cos$\frac{2π}{3}$+isin$\frac{2π}{3}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用三角函数求值、几何意义即可得出.

解答 解:由题意可知,z=cos$\frac{2π}{3}$+isin$\frac{2π}{3}$=$-\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,对应的点$(-\frac{1}{2},\frac{\sqrt{3}}{2})$在第二象限.
故选:B.

点评 本题考查复数的实部和虚部运算与复数与平面内点的对应关系、三角函数求值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.PA=AD=PD=2,且平面PAD⊥平面ABCD,
(1)求证:AB∥EF;
(2)证明:AF⊥平面PCD;
(3)求三棱锥P-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M⊆{2,7},则这样的集合M共有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α为第三象限角,且cosα=-$\frac{{\sqrt{5}}}{5}$,则tan2α的值为(  )
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|2x+2|-|x-2|.
(1)求不等式f(x)<0的解集;
(2)若?x∈R,f(x)+t3+2t≥0恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an},{bn}都是等差数列,Sn,Tn分别是它们的前n项和,且$\frac{S_n}{T_n}=\frac{7n+1}{n+3}$,则$\frac{{{a_3}+{a_5}+{a_{17}}+{a_{21}}}}{{{b_6}+{b_8}+{b_{14}}+{b_{18}}}}$的值为(  )
A.$\frac{39}{7}$B.$\frac{17}{3}$C.$\frac{71}{13}$D.$\frac{31}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设椭圆E的方程为$\frac{x^2}{a^2}$+y2=1(a>1),O为坐标原点,直线l与椭圆E交于点A,B,M为线段AB的中点.
(1)若A,B分别为E的左顶点和上顶点,且OM的斜率为-$\frac{1}{2}$,求E的标准方程;
(2)若a=2,且|OM|=1,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,求$\frac{cosα+sinα}{cosα-sinα}$的值;
(2)已知β,β均为锐角,且cos(α+β)=$\frac{\sqrt{5}}{5}$,sin(α-β)=$\frac{\sqrt{10}}{10}$,求β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|log2(x2-2x-8)<4},B={x|$\frac{1}{4}$<2${\;}^{{x^2}-x}}$<64}.
(1)求(∁RA)∪B;
(2)若(a,a+1)⊆B,求a的取值范围.

查看答案和解析>>

同步练习册答案