精英家教网 > 高中数学 > 题目详情

已知三棱锥中,平面分别是直线上的点,且

(1) 求二面角平面角的余弦值
(2) 当为何值时,平面平面

(1) (2)

解析试题分析:(1)因为,三棱锥中,平面分别是直线上的点,且
所以,三角形BCD是等腰直角三角形,,AB=,由三垂线定哩,得,,所以,是二面角的平面角,故二面角平面角的余弦值是
(2)由已知得,,而CD⊥平面ABC,,所以,EF⊥平面ABC,EF⊥BE,平面平面ABC,所以,为使平面平面,只需BE⊥AC,此时,BE= ,AE= ,故=
考点:三棱锥的几何特征,平行关系,垂直关系,角的计算。
点评:中档题,立体几何问题中,平行关系、垂直关系,角、距离、面积、体积等的计算,是常见题型,基本思路是将空间问题转化成为平面问题,利用平面几何知识加以解决。要注意遵循“一作,二证,三计算”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,矩形,满足上,上,且,沿将矩形折起成为一个直三棱柱,使重合后分别记为,在直三棱柱中,点分别为的中点.

(I)证明:∥平面
(Ⅱ)若二面角为直二面角,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且,,的中点.(1)求点到面的距离;(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形中,

(1)点的中点,点的中点,将分别沿折起,使两点重合于点。求证:
(2)当时,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,多面体中,四边形是边长为的正方形,平面垂直于平面,且.
(Ⅰ)求证:
(Ⅱ)若分别为棱的中点,求证:∥平面
(Ⅲ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形中,为线段的中点,将沿折起,使平面⊥平面,得到几何体.

(1)若分别为线段的中点,求证:∥平面
(2)求证:⊥平面
(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.

(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(I)求证
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊥平面是正三角形,,且的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面BCE⊥平面

查看答案和解析>>

同步练习册答案