精英家教网 > 高中数学 > 题目详情

如图,已知⊥平面是正三角形,,且的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面BCE⊥平面

(1)取CE中点P,连结FP、BP,∵F为CD的中点,借助于中位线定理得到FP∥DE,再结合平行的传递性得到证明。
(2)对于面面垂直的证明,关键是要根据线面垂直的判定定理以及面面垂直的判定定理得到。

解析试题分析:解:(Ⅰ)取CE中点P,连结FP、BP,
∵F为CD的中点,
∴FP∥DE,且FP=
又AB∥DE,且AB=  ∴AB∥FP,且AB=FP,
∴ABPF为平行四边形,∴AF∥BP. 4分
又∵AF平面BCE,BP平面BCE,
∴AF∥平面BCE …………7分
(Ⅱ)∵△ACD为正三角形,∴AF⊥CD
∵AB⊥平面ACD,DE//AB
∴DE⊥平面ACD  又AF平面ACD
∴DE⊥AF
又AF⊥CD,CD∩DE=D
∴AF⊥平面CDE            12分
又BP∥AF 
∴BP⊥平面CDE又∵BP平面BCE
∴平面BCE⊥平面CDE   14分
考点:线面垂直和面面垂直
点评:主要是考查了空间中线面和面面垂直的判定定理的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知三棱锥中,平面分别是直线上的点,且

(1) 求二面角平面角的余弦值
(2) 当为何值时,平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱

(I)当正视方向与向量的方向相同时,画出四棱锥的正视图(要求标出尺寸,并写出演算过程);
(II)若M为PA的中点,求证:求二面角
(III)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.

(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.
(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,
且AC=AD=CD=DE=2,AB=1.

(Ⅰ)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,的直径AB=4,点C、D为上两点,且CAB=45°,DAB=60°,F为弧BC的中点.沿直径AB折起,使两个半圆所在平面互相垂直,如图2.
(I)求证:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在点G,使得FG平面ACD?若存在,试指出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为

(1)求棱的长;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P-ABCD的直观图(如图(1))及左视图(如图(2)),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB。

(1)求证:AD⊥PB;
(2)求异面直线PD与AB所成角的余弦值;
(3)求平面PAB与平面PCD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥E—ABCD中,底面ABCD是平行四边形。∠ABC=45°,BE=BC=   EA=EC=6,M为EC中点,平面BCE⊥平面ACE,AE⊥EB

(I)求证:AE⊥BC (II)求四棱锥E—ABCD体积

查看答案和解析>>

同步练习册答案