精英家教网 > 高中数学 > 题目详情

在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为

(1)求棱的长;
(2)求点到平面的距离.

(1)3(2)

解析试题分析:解:(1)设,由题设
,即,解得
的长为
(2)以点为坐标原点,分别以所在的直线为轴,轴,轴建立空间直角坐标系.
由已知及(1),可知
设平面的法向量为,有
其中,则有解得,取,得平面的一个法向量,且
在平面上取点,可得向量,于是点到平面的距离
考点:点到平面的距离
点评:求点到平面的距离,可通过向量方法来求解,有时也可通过三棱锥的体积来求解(等体积法)。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.

(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,设顶点在底面上的射影为

(Ⅰ)求证:
(Ⅱ)设点在棱上,且,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊥平面是正三角形,,且的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面BCE⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(Ⅰ)求证:DC平面ABC;
(Ⅱ)设,求三棱锥A-BFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


几何体EFG —ABCD的面ABCD,ADGE,DCFG均为矩形,AD=DC=l,AE=

(I)求证:EF⊥平面GDB;
(Ⅱ)线段DG上是否存在点M使直线BM与平面BEF所成的角为45°,若存在求等¥ 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.

(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱点M,N分别为的中点.

(Ⅰ)证明:∥平面
(Ⅱ)若二面角A为直二面角,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在四棱锥中,底面是边长为2的正方形,侧棱平面,且为底面对角线的交点,分别为棱的中点

(1)求证://平面
(2)求证:平面
(3)求点到平面的距离。

查看答案和解析>>

同步练习册答案