精英家教网 > 高中数学 > 题目详情

已知在四棱锥中,底面是边长为2的正方形,侧棱平面,且为底面对角线的交点,分别为棱的中点

(1)求证://平面
(2)求证:平面
(3)求点到平面的距离。

(1)证明:是正方形,,的中点,又的中点,,且平面平面,平面.  4分
(2)证明:,,又可知,而,,,,,又,的中点,,而,平面,平面;
(3)点到平面的距离为.

解析试题分析:(1)证明:是正方形,,的中点,又的中点,,且平面平面,平面.  4分
(2)证明:,,又可知,而,,,,,又,的中点,,而,平面,平面  8分
(3)解:设点到平面的距离为,由(2)易证,,,,
,即,,得
即点到平面的距离为   12分
考点:本题主要考查立体几何中的平行关系、垂直关系,距离的计算。
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。要注意将立体几何问题转化成了平面几何问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为

(1)求棱的长;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.

(Ⅰ) 当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;
(Ⅱ) 设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥E—ABCD中,底面ABCD是平行四边形。∠ABC=45°,BE=BC=   EA=EC=6,M为EC中点,平面BCE⊥平面ACE,AE⊥EB

(I)求证:AE⊥BC (II)求四棱锥E—ABCD体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=,D为AA1中点,BD与AB1交于点O,CO丄侧面ABB1A1.

(Ⅰ)证明:BC丄AB1
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,分别为的中点,,且

(1)证明:
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知菱形所在平面与直角梯形所在平面互相垂直,,分别是线段,的中点.

(I)求证:平面 平面;
(Ⅱ)点在直线上,且//平面,求平面与平面所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方体中,面中心为

(1)求证:
(2)求异面直线所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,矩形所在的平面和圆所在的平面互相垂直,且.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

同步练习册答案