精英家教网 > 高中数学 > 题目详情

【题目】已知中,,以为轴将旋转,形成三棱锥

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的余弦值.

【答案】(Ⅰ)详见解析;(Ⅱ)

【解析】

(Ⅰ)取的中点,连接,取的中点的中点,连接.证明平面,即得,再由平面几何知识得,由可得线面垂直,从而得证线线垂直;

(Ⅱ)作出直线与平面所成的角,通过解三角形求解.

(Ⅰ)证明:取的中点,连接,取的中点的中点,连接.则

,∴,由旋转知

∴二面角的平面角即为

,∴平面

平面,∴平面平面

为正三角形,∴

∵平面平面,∴平面

平面,∴

易求得

,则,所以

所以,从而

,∴平面

平面

(Ⅱ)取的中点,连接,过点边上的高,垂足为

,又,且的中点,

,∴平面

,且平面,∴

,∴平面

∴直线与平面所成的角即为

由(Ⅰ)可知为正三角形,可知

则易求得

,则

即直线与平面所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年是全面建成小康社会目标实现之年,也是全面打赢脱贫攻坚战收官之年.某乡镇在2014年通过精准识别确定建档立卡的贫困户共有500户,结合当地实际情况采取多项精准扶贫措施,每年新脱贫户数如下表

年份

2015

2016

2017

2018

2019

年份代码

1

2

3

4

5

脱贫户数

55

68

80

92

100

1)根据2015-2019年的数据,求出关于的线性回归方程,并预测到2020年底该乡镇500户贫困户是否能全部脱贫;

22019年的新脱贫户中有20户五保户,20户低保户,60户扶贫户.该乡镇某干部打算按照分层抽样的方法对2019年新脱贫户中的5户进行回访,了解生产生活、帮扶工作开展情况.为防止这些脱贫户再度返贫,随机抽取这5户中的2户进行每月跟踪帮扶,求抽取的2户不都是扶贫户的概率.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx)=exax2axhx)=ex2xlnx.其中e为自然对数的底数.

1)若fx)=hx)﹣gx).

①讨论fx)的单调性;

②若函数fx)有两个不同的零点,求实数a的取值范围.

2)已知a0,函数gx)恰有两个不同的极值点x1x2,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,中,为线段上一点,且,让绕直线翻折到且使

(Ⅰ)在线段上是否存在一点,使平面平面?请证明你的结论;

(Ⅱ)求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图抛物线的焦点为为抛物线上一点(轴上方),点到轴的距离为4.

1)求抛物线方程及点的坐标;

2)是否存在轴上的一个点,过点有两条直线,满足交抛物线两点.与抛物线相切于点不为坐标原点),有成立,若存在,求出点的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个微信群某次进行的抢红包活动中,群主所发红包的总金额为10元,被随机分配为2.49元、1.32元、2.19元、0.63元、3.37元共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当m=6时,求函数的极值;

2)若关于x的方程在区间[14]上有两个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)若函数在区间上不单调,求的取值范围;

(2)若函数在区间上有极大值,求的值.

查看答案和解析>>

同步练习册答案