精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+2x+
1
2
x
,其中x∈[1,+∞).
(1)试判断它的单调性;
(2)试求它的最小值.
考点:函数单调性的性质,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)根据函数单调性的定义进行证明.
(2)根据函数单调性和最值之间的关系即可得到结论.
解答: 解:(1)函数f(x)=
x2+2x+
1
2
x
=x+
1
2x
+2,
设1≤x1≤x2时,f(x1)-f(x2)=(x1-x2)+(
1
2x1
-
1
2x2
)=(x1-x2
2x1x2-1
2x1x2

因为1≤x1≤x2,所以x1-x2<0,
2x1x2-1
2x1x2
>0

所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在区间[1,+∞)上单调递增;
(2)因为f(x)在区间[1,+∞)上单调递增,
所以当x=1时,f(x)有最小值
7
2
点评:本题主要考查函数单调性和最值的求解和证明,利用函数单调性的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程log 
1
2
(a-2x)=2+x有解,则a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若对于一切n∈N+
Sn
S2n
=t(t为非零常数),则称数列{an}为“和谐数列”,t为“和谐比”.
(Ⅰ)设数列{bn}是首项为1,公差为2的等差数列,证明:数列{bn}为“和谐数列”,并求出“和谐比”;
(Ⅱ)在(Ⅰ)的条件下,设cn=bn2bn,n∈N+,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y≤1
x-y≤1
x≥a
,若|
y
x-2
|≤
1
2
恒成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=
2
,且
b
•(2
a
+
b
)=1,则
a
b
夹角的余弦值为(  )
A、-
1
3
B、-
2
4
C、
2
3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知Sn=1-2+3-4+…+(-1)n-1•n,则S17=(  )
A、9B、8C、17D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

连续抛掷两枚骰子(它们的六个面点数分别为1,2,3,4,5,6),记所得朝上的面的点数分别为x,y,过坐标原点和点P(x,y)的直线的斜率为k,则k>
3
的概率为(  )
A、
3
4
B、
1
2
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,函数f(x)=a-
2
2x+1
(x∈R)
(1)试证:对任意a,f(x)在R上为增函数;
(2)是否存在a,使f(x)为奇函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面的程序框图中,若输出S的值为126,则图中应填上的条件为(  )
A、n≤5B、n≤6
C、n≤7D、n≤8

查看答案和解析>>

同步练习册答案