精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,满足Sn≥S5=-20,n∈N*,则数列公差d的取值范围是
 
考点:等差数列的前n项和,等差数列的通项公式
专题:等差数列与等比数列
分析:由S5=-20得到首项和公差间的关系,代入Sn≥-20得到n(n-5)d≥8(n-5),分类讨论n后即可求得公差d的取值范围.
解答: 解:由S5=-20,得5a1+
5×4d
2
=-20

整理得:a1=-4-2d.
再由Sn=na1+
n(n-1)d
2
≥-20
,得:
n(-4-2d)+
n(n-1)d
2
≥-20

整理得:n(n-5)d≥8(n-5)①
当n=5时,对于任意实数d①式都成立;
当n≤4时,①式化为d≤
8
n

当n=4时,
8
n
取最小值2.
∴d≤2;
当n≥6时,①式化为d≥
8
n

当n=6时,
8
n
取最大值
4
3

d≥
4
3

综上,d的取值范围是
4
3
≤d≤2.
故答案为:
4
3
≤d≤2.
点评:本题考查等差数列的前n项和,考查了数列的函数图象,体现了分类讨论的数学思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x3-3x+a
的定义域为[0,+∞),则实数a的取值范围为(  )
A、(0,3)
B、(0,2)
C、(2,+∞)
D、(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(Ⅰ)求证:平面ABE⊥B1BCC1
(Ⅱ)求证:C1F∥平面ABE;
(Ⅲ)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x+
1
a
|+|x-a|(a>0).
(Ⅰ)证明:f(x)≥2;
(Ⅱ)若f(3)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体的棱长为1,C、D分别是两条棱的中点,A、B、M是顶点,那么点M到截面ABCD的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
6
x
-log2x,在下列区间中,包含f(x)零点的区间是(  )
A、(0,1)
B、(1,2)
C、(2,4)
D、(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)01000200030004000
车辆数(辆)500130100150120
(Ⅰ)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;
(Ⅱ)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

同步练习册答案