精英家教网 > 高中数学 > 题目详情
2.集合A={0,1,2,3},B={x∈N|1<x≤5},则A∩B(  )
A.{2,3}B.{2,3,4}C.{0,1,2,3,4,5}D.{0,1}

分析 求出集合B,然后求解交集即可.

解答 解:集合A={0,1,2,3},B={x∈N|1<x≤5}={2,3,4,5},
则A∩B={2,3}.
故选:A.

点评 本题考查集合的交集的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在同一平面直角坐标系中,曲线C:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后,变为曲线C′.
(1)求曲线C′的方程;
(2)在曲线C′上求一点P,使点P到直线x+2y-8=0的距离最小,求出最小值并写出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)是定义在(-3,3)上的奇函数,且单调递减,若f(2-a)+f(4-3a)<0,则a的取值范围为$({\frac{1}{3},\frac{3}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$(2,λ),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则实数λ的取值范围是λ>-1且λ≠4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}2x+b\\{x^2}+({a^2}-4a)x+1\end{array}\right.\begin{array}{l}x≥0\\ x<0\end{array}$,其中a,b∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x2)=f(x1)成立,则a+b的取值范围为[1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线C的中心在原点,焦点在x轴上,离心率为$\sqrt{2}$,且经过点$(4,-\sqrt{10})$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)求双曲线的顶点坐标,焦点坐标,渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在下列给出的命题中,所有正确命题的个数为(  )
①函数y=2x3-3x+1的图象关于点(0,1)成中心对称;
②对?x,y∈R,若x+y≠0,则x≠1或y≠-1;
③若实数x,y满足x2+y2=1,则$\frac{y}{x+2}$的最大值为$\frac{\sqrt{3}}{3}$;
④若△ABC为锐角三角形,则sinA<cosB.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.两个形如y=xα(α为常数)的幂函数图象最少有几个交点(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=a•4x+2x+1(a∈R),若当x∈(-∞,1)时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案