精英家教网 > 高中数学 > 题目详情
(选做题)
如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE·CE=EF·EA。

证明:因为Rt△ABC中,∠ABC=90°,
所以OB⊥CB,
所以CB为⊙O的切线,
所以EB2=EF·FA,
连接OD,因为AB=BC,
所以∠BAC=45°,
所以∠BOD=90°,
在四边形BODE中,∠BOD=∠OBE=∠BED=90°,
所以BODE为矩形,
所以BE=OD=OB=AB=BC,
即BE=CE,
所以BE·CE=EF·EA。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是
 

B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=
 

精英家教网
C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1
x=3+cosθ
y=sinθ
 (θ为参数)和曲线C2:p=1上,则|AB|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(考生只能从A,B,C中选做一题,多做以所做第一题记分)
A.(不等式选做题)
已知a∈R,若关于x的方程x2+4x+|a-1|+|a+1|=0无实根,则a的取值范围是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(几何证明选做题)
如图,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为
π
π

C.(坐标系与参数方程选做题)
在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为

(B)(极坐标系与参数方程选做题)极坐标方程ρ=2sinθ+4cosθ表示的曲线截θ=
π
4
(ρ∈R)
所得的弦长为
3
2
3
2

(C)(不等式选做题)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中数学 来源:2011年陕西省高考数学试卷(文科)(解析版) 题型:解答题

(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是   
B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=   

C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1 (θ为参数)和曲线C2:p=1上,则|AB|的最小值为   

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学文(陕西卷)解析版 题型:填空题

 (考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)

A.(不等式选做题)若不等式对任意R恒成立,则的取值范围是            

B.(几何证明选做题)如图,∠B=∠D,,且AB=6,AC=4,AD=12,则AE=        

C.(坐标系与参数方程选做题)直角坐标系中,以原点O为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线为参数)和曲线上,则的最小值为       

 

查看答案和解析>>

同步练习册答案