精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,右顶点为,设离心率为,且满足,其中为坐标原点.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点(0,1)的直线与椭圆交于两点,求面积的最大值.

【答案】(1) ;(2) .

【解析】试题分析:Ⅰ)设椭圆的焦半距为c,结合题意分析可得,结合椭圆的几何性质可得a、b的值,代入椭圆的方程即可得答案;

Ⅱ)由题意分析可得直线lx轴不垂直,设其方程为y=kx+1,联立l与椭圆C的方程,可得(4k2+3)x2+8kx﹣8=0,结合根与系数的关系可以用k表示|MN|与Ol的距离,由三角形面积公式计算可得△OMN的面积 .,由基本不等式分析可得答案.

试题解析:

(Ⅰ)设椭圆的焦半距为,则.

所以,其中,又,联立解得.

所以椭圆的方程是.

(Ⅱ)由题意直线不能与轴垂直,否则将无法构成三角形.

当直线轴不垂直时,设其斜率为,那么的方程为.

联立与椭圆的方程,消去,得.

于是直线与椭圆由两个交点的充要条件是,这显然成立.

设点.

由根与系数的关系得.

所以 ,又的距离.

所以的面 .

,那么 ,当且仅当时取等号.

所以面积的最大值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长均为4的三棱柱中, 分别是的中点.

(1)求证: 平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)

无意愿

有意愿

总计

40

5

总计

25

80

(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;

(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.

附参考公式及数据: ,其中.

0.40

0.25

0.10

0.010

0.005

0.001

0.708

1.323

2.706

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若函数为定义域上的单调函数,求实数的取值范围;

(Ⅱ)当时,函数的两个极值点为 ,且.证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求具体解答过程,给出结论即可);

(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认同”,请根据此样本完成此列联表,并局此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;

(Ⅲ)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?

合计

认可

不认可

合计

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程和相关系数,分别得到以下四个结论:

其中,一定不正确的结论序号是( )

A. ②③ B. ①④ C. ①②③ D. ②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市英才中学的一个社会实践调查小组,在对中学生的良好“光盘习惯”的调查中,随机发放了120份问卷,对收回的120份有效问卷进行统计,得到如下列联表:

做不到光盘

能做到光盘

合计

45

10

55

30

15

45

合计

75

25

100

(1)现已按是否能做到光盘分层从45份女生问卷中抽取9份问卷,若从这9份问卷中随机抽取4份,并记其中能做到光盘的问卷的份数为,试求随机变量的分布列和数学期望;

(2)如果认为良好“光盘习惯”与性别有关犯错误的概率不超过,那么根据临界值表最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中.

独立性检验临界表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,的中点.

(1),求证:

(2),且,点在线段上,试确定点的位置,使二面角大小为,并求出的值.

查看答案和解析>>

同步练习册答案