精英家教网 > 高中数学 > 题目详情

(12分)已知函数上是单调递增函数,求实数的取值范围.

解析试题分析:由,得.                 ……4分
若函数上的单调增函数,则上恒成立,
即不等式上恒成立.
也即上恒成立.                                     ……8分
上为减函数,.
所以.                                                           ……12分
考点:本小题主要考查已知函数的单调性求参数的取值范围,考查学生的转化能力和运算求解能力.
点评:函数是单调增函数,可知恒成立,而不是恒成立,而恒成立问题往往转化成最值问题解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)求在曲线上一点的切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,有一边长为2米的正方形钢板缺损一角(图中的阴影部分),边缘线是以直线为对称轴,以线段的中点为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.

(Ⅰ)请建立适当的直角坐标系,求阴影部分的边缘线的方程;
(Ⅱ)如何画出切割路径,使得剩余部分即直角梯形的面积最大?
并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论的大小关系;
(Ⅲ)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数.
(1)当时,求证:函数上单调递增;
(2)若函数有三个零点,求的值;
(3)若存在,使得,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;
(2)若函数y=f(x)为单调函数,求实数a的取值范围;
(3)当时,求函数f(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若当的表达式;
(2)求实数上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数上是增函数,在上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数的取值范围;
(3)是否存在实数,使得方程在区间上恰有两个相异实数根,若存在,求出的范围,若不存在说明理由.

查看答案和解析>>

同步练习册答案