精英家教网 > 高中数学 > 题目详情

(本题满分12分)
已知函数.
(1)当时,求证:函数上单调递增;
(2)若函数有三个零点,求的值;
(3)若存在,使得,试求的取值范围。

(1)证明:,由于所以故函数上单调递增(2)(3)

解析试题分析:(1)
由于,故当时,,所以
故函数上单调递增-----------------------------------4分
(2)当时,因为,且在R上单调递增,
有唯一解
所以的变化情况如下表所示:

x

0



0


递减
极小值
递增
又函数有三个零点,所以方程有三个根,
,所以,解得 -----------8分
(3)因为存在,使得
所以当时,
由(Ⅱ)知,上递减,在上递增,
所以当时,

,因为(当时取等号),
所以上单调递增,而
所以当时,;当时,
也就是当时,;当时,
①当时,由
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
已知函数的图像过坐标原点,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)试用含的代数式表示
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数处取得极值,记点,证明:线段与曲线存在异于的公共点;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设函数.
⑴ 求的极值点;
⑵ 若关于的方程有3个不同实根,求实数a的取值范围.
⑶ 已知当恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数上是单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数,其中.
(1)当时,求函数处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时,;当时,.
(1)求在[0,1]内的值域;
(2)为何值时,不等式在[1,4]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)过曲线C:外的点A(1,0)作曲线C的切线恰有两条,
(Ⅰ)求满足的等量关系;
(Ⅱ)若存在,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设函数f(x)=x2+ex-xex.(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案