已知函数
且![]()
(Ⅰ)试用含
的代数式表示
;
(Ⅱ)求
的单调区间;
(Ⅲ)令
,设函数
在
处取得极值,记点
,证明:线段
与曲线
存在异于
、
的公共点;
(Ⅰ)
;(Ⅱ)当
时,函数
的单调增区间为
和
,单调减区间为
;当
时,函数
的单调增区间为R;当
时,函数
的单调增区间为
和
,单调减区间为![]()
(Ⅲ)易得
,而
的图像在
内是一条连续不断的曲线,
故
在
内存在零点
,这表明线段
与曲线
有异于
的公共点
解析试题分析:解法一:(Ⅰ)依题意,得![]()
由
得![]()
(Ⅱ)由(Ⅰ)得![]()
故![]()
令
,则
或![]()
①当
时,![]()
当
变化时,
与
的变化情况如下表:
由此得,函数![]()
![]()
![]()
![]()
![]()
+ — + ![]()
单调递增 单调递减 单调递增
的单调增区间为
和
,单调减区间为![]()
②由
时,
,此时,
恒成立,且仅在
处
,故函数
的单调区间为R
③当
时,
,同理可得函数
的单调增区间为
和
,单调减区间为![]()
综上:
当
时,函数
的单调增区间为
和
,单调减区间为
;
当
时,函数
的单调增区间为R;
当
时,函数
的单调增区间为
和
,单调减区间为![]()
(Ⅲ)当
时,得![]()
由![]()
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数
的零点的集合为{0,1},且
是f(x)的一个极值点。
(1)求
的值;
(2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数
(其中e为自然对数)
(1)求F(x)="h" (x)
的极值。
(2)设
(常数a>0),当x>1时,求函数G(x)的单调区间,并在极值存在处求极值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知函数f(x)=lnx+![]()
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设m
R,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>
∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,有一边长为2米的正方形钢板
缺损一角(图中的阴影部分),边缘线
是以直线
为对称轴,以线段
的中点
为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.![]()
(Ⅰ)请建立适当的直角坐标系,求阴影部分的边缘线
的方程;
(Ⅱ)如何画出切割路径
,使得剩余部分即直角梯形
的面积最大?
并求其最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com