(本小题满分12分)已知函数(其中e为自然对数)
(1)求F(x)="h" (x)的极值。
(2)设 (常数a>0),当x>1时,求函数G(x)的单调区间,并在极值存在处求极值。
(1)F(x)取极小值为0(2)若1时,即0<a2,G(x)在(1,)递增.,无极值。若>1时,即a>2,G(x)在(1,)递减,在(,))递增。所以处有极小值,极小值为
解析试题分析:(1) (x>0)
当0<x<时, <0, 此时F(x)递减,
当x>时, >0,此时F(x)递增
当x=时,F(x)取极小值为0 ……6分
(2)可得=
, ……9分
当x<时,G(x)递减,当x>时,G(x)递增 x>1, 若1时,即0<a2,G(x)在(1,)递增.,无极值。若>1时,即a>2,G(x)在(1,)递减,在(,))递增。所以处有极小值,极小值为 …… 12分
考点:利用函数的导数求极值,单调区间
点评:本题第二问中求单调区间,极值时要注意对参数a的讨论,当a取不同值时,函数在x>1的范围内的单调性不同
科目:高中数学 来源: 题型:解答题
(本题满分为12分)
已知函数的图像过坐标原点,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若A,B是函数f(x)图象上不同的两点,且直线AB的斜率恒大于1,求实数m的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
设点P在曲线上,从原点向A(2,4)移动,如果直线OP,曲线及直线x=2所围成的面积分别记为、。
(Ⅰ)当时,求点P的坐标;
(Ⅱ)当有最小值时,求点P的坐标和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com