精英家教网 > 高中数学 > 题目详情

(10分)设函数.
⑴ 求的极值点;
⑵ 若关于的方程有3个不同实根,求实数a的取值范围.
⑶ 已知当恒成立,求实数k的取值范围.

;⑵;(3)

解析试题分析:⑴.
⑵ 由(Ⅰ)的分析可知图象的大致形状及走向(图略)
∴当的图象有3个不同交点,
即方程有三解

上恒成立
,由二次函数的性质,上是增函数,
∴所求k的取值范围是.
考点:利用导数研究函数的极值;利用导数研究函数的单调性和最值;恒成立问题。
点评:解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题, 思路1:上恒成立;思路2: 上恒成立。注意恒成立问题与存在性问题的区别。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线过点P(1,3),且在点P处的切线
恰好与直线垂直.求 (Ⅰ) 常数的值; (Ⅱ)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数(其中e为自然对数)
(1)求F(x)="h" (x)的极值。
(2)设 (常数a>0),当x>1时,求函数G(x)的单调区间,并在极值存在处求极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,有一边长为2米的正方形钢板缺损一角(图中的阴影部分),边缘线是以直线为对称轴,以线段的中点为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.

(Ⅰ)请建立适当的直角坐标系,求阴影部分的边缘线的方程;
(Ⅱ)如何画出切割路径,使得剩余部分即直角梯形的面积最大?
并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,其中.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数.
(1)当时,求证:函数上单调递增;
(2)若函数有三个零点,求的值;
(3)若存在,使得,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分) 已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,判断方程实根个数.
(3)若时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数.
设关于x的不等式 的解集为且方程的两实根为.
(1)若,求的关系式;
(2)若,求证:.

查看答案和解析>>

同步练习册答案