(本小题满分12分)
已知函数的零点的集合为{0,1},且是f(x)的一个极值点。
(1)求的值;
(2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。
(1);(2)当或时,,方程①有两等根或,此时,过点或与曲线相切的直线有两条;
当时,,方程①无解,此时过点与曲线相切的直线仅有一条;
当或时,,方程①有两个不同的实根,此时过点与曲线相切的直线有三条.
解析试题分析:(Ⅰ)函数的零点的集合为,则方程 的解可以为,或.
∴或.
①若,则.
当,或时,,函数为增函数;当,,函数为减函数;
∴,为函数的极值点.与题意不符.
②若,则
当,或时,,函数为增函数;当,,函数为减函数;
∴,为函数的极值点.
综上,函数,即,
而,故,∴ …6分
(Ⅱ)设过点的直线与曲线切于点,
由(Ⅰ)知,∴曲线在点处的切线方程为,
∵满足此方程,故,又
即,∴.
,或…①,关于的方程的判别式
当或时,,方程①有两等根或,此时,过点或与曲线相切的直线有两条;
当时,,方程①无解,此时过点与曲线相切的直线仅有一条;
当或时,,方程①有两个不同的实根,此时过点与曲线相切的直线有三条. …12分
考点:函数的零点;函数的极值点;导数的几何意义;曲线的切线方程。
点评:利用导数求曲线的切线方程,我们一定要分清是“在某点处的切线”还是“过某点的切线”。对于“在某点处的切线”的问题,这一点就是切点,直接根据导数的几何意义写出切线方程即可。对于“过某点的切线”问题,我们一般要把切点坐标设出来解决。
科目:高中数学 来源: 题型:解答题
(本题满分为12分)
已知函数的图像过坐标原点,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若A,B是函数f(x)图象上不同的两点,且直线AB的斜率恒大于1,求实数m的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com