精英家教网 > 高中数学 > 题目详情

已知 
⑴若的极值点,求实数值。
⑵若对都有成立,求实数的取值范围。

(1)  (2)

解析试题分析:、① 解得     (2分)
 ↗   (4分)

时,↗, 
不符题意   (6分)
时, 解得解得,得到↘ ,在↗,解得   (9分) 当 解得  即 满足条件    ∴                  (12分)
考点:导数的运用。
点评:解决该试题的关键是利用导数的极值的含义,确定导数为零点,进而得到解析式,同时利用不等式的恒成立,转化为求解最值,是转化思想的考查,中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ) 当时,设函数的3个极值点为,且.
证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数处有极小值
(1)求函数的解析式;
(2)若函数只有一个零点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=x-(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.
(1)若对[1,+)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的零点的集合为{0,1},且是f(x)的一个极值点。
(1)求的值;
(2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分) 已知函数f(x)=ax3+bx2+cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取极值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤2;
(3)求证:曲线y=f(x)上不存在两个不同的点A,B,使过A, B两点的切线都垂直于直线AB。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)求在曲线上一点的切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;
(2)若函数y=f(x)为单调函数,求实数a的取值范围;
(3)当时,求函数f(x)的极小值.

查看答案和解析>>

同步练习册答案