精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的单调区间;
(2)求在曲线上一点的切线方程。

(1)增区间:减区间:(2)

解析试题分析:(1)函数求导,令,令,所以增区间:,减区间:
(2),所以过点的切线斜率为0,切线方程为
考点:函数导数求单调区间求切线斜率
点评:函数导数可得增区间,可得减区间,函数在某点处的导数值等于该点处的切线斜率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
⑴若的极值点,求的值;
⑵若的图象在点处的切线方程为,求在区间上的最大值;
⑶当时,若在区间上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 
⑴若的极值点,求实数值。
⑵若对都有成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设函数
(1)若
(2)若

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)试用含的代数式表示
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数处取得极值,记点,证明:线段与曲线存在异于的公共点;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数
(1)判断的单调性;
(2)记若函数有两个零点,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数上是单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知是函数的一个极值点,且函数的图象在处的切线的斜率为2.
(Ⅰ)求函数的解析式并求单调区间.(5分)
(Ⅱ)设,其中,问:对于任意的,方程在区间上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.(9分)

查看答案和解析>>

同步练习册答案