精英家教网 > 高中数学 > 题目详情

在△ABC中,AB=2AC=2,∠BAC=120°,数学公式,若数学公式(O是△ABC的外心),则x1+x2的值为________.


分析:建立直角坐标系,求出三角形各顶点的坐标,因为O为△ABC的外心,把AB的中垂线 m方程和AC的中垂线 n的方程,联立方程组,求出O的坐标,利用已知向量间的关系,待定系数法求λ1和λ2 的值.
解答:如图:以A为原点,以AB所在的直线为x轴,建立直角系:则A(0,0),B (2,0),C(-).
∵O为△ABC的外心,∴O在AB的中垂线 m:x=1 上,又在AC的中垂线 n 上,
AC的中点(-),AC的斜率为-3,∴中垂线n的方程为 y-=(x+).
把直线 m和n 的方程联立方程组解得△ABC的外心O(1,),由条件 =
得(1, )=x1 (2,0)+x2 (-)=(2x1-x2 x2 ),
∴2x1-x2=1, x2=,∴x1 =,x2 =,∴x1+x2=
故答案为:

点评:本题考查求两条直线的交点坐标的方法,三角形外心的性质,向量的坐标表示及向量相等的条件,待定系数法求参数值.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,D、E分别是AB、AC的中点,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=2,S△ABC=2
3

(1)求△ABC外接圆的面积.
( 2)求cos(2B+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=a,AC=b,当
a
b
<0
时,△ABC为
钝角三角形
钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=2,BC=3,AC=
7
,则△ABC的面积为
3
3
2
3
3
2
,△ABC的外接圆的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
=
a
AC
=
b
,M为AB的中点,
BN
=
1
3
BC
,则
 

查看答案和解析>>

同步练习册答案