精英家教网 > 高中数学 > 题目详情
16.平面直角坐标系中,O为原点,A、B、C三点满足$\overrightarrow{OC}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$,则$\frac{|\overrightarrow{BC}|}{|\overrightarrow{AC}|}$=(  )
A.1B.2C.3D.$\frac{3}{2}$

分析 利用向量的三角形法则即可得出.

解答 解:∵$\overrightarrow{BC}$=$\overrightarrow{OC}-\overrightarrow{OB}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$-$\overrightarrow{OB}$=$\frac{3}{4}$$\overrightarrow{BA}$,
$\overrightarrow{AC}$=$\overrightarrow{OC}-\overrightarrow{OA}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$-$\overrightarrow{OA}$=$\frac{1}{4}$$\overrightarrow{AB}$,
∴$\frac{|\overrightarrow{BC}|}{|\overrightarrow{AC}|}$=3.
故选:C.

点评 本题考查了三角形法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,与x轴交于A、B两点,与y轴交于P点,其一条对称轴与x轴交于C点,且PA=PC=2$\sqrt{3}$,PB=BC.则ω=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,$∠A=\frac{π}{3}$,BC=3,$AB=\sqrt{6}$,则∠C=$\frac{π}{4}$,AC=$\frac{{\sqrt{6}+3\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.教育学家分析发现加强语文阅读理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲、乙两个同轨班级进行实验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面2×2列联表:(单位:人)
优秀人数非优秀人数总计
甲班22830
乙班81220
总计302050
(1)能否据此判断有97.5%的把握认为加强语文阅读理解训练与提高数学应用题得分率有关?
(2)经过多次测试后,小明正确解答一道数学题所用的时间在5-7分钟,小刚正确解答一道数学题所用的时间在6-8分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明先正确解答完的概率;
(3)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们的大题情况进行全程研究,记A、B两人中被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x)是集合A到集合B的一个函数,其中,A={1,2,…,n},B={1,2,…,2n},n∈N*,则f(x)为单调递增函数的个数是(  )
A.$A_{2n}^n$B.n2nC.(2n)nD.${C}_{2n}^{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=100的不同整数解(x,y)的个数为(  )
A.400B.420C.440D.480

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列语句中不是命题的为(  )
A.中国女排真棒!B.闪光的东西并非都是金子
C.经过三点确定一个平面D.3-5=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列数字开始,由左到右依次选取两个数字,则选出来的第5个个体的编号为(  )
78166572080263140702436997280198
32049234493582003623486969387481
A.08B.07C.02D.01

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx,F(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2-f(x)有两个极值点x1、x2,且x1∈(0,$\frac{1}{2}$),求证:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

同步练习册答案