精英家教网 > 高中数学 > 题目详情
5.总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列数字开始,由左到右依次选取两个数字,则选出来的第5个个体的编号为(  )
78166572080263140702436997280198
32049234493582003623486969387481
A.08B.07C.02D.01

分析 根据随机数表,依次进行选择即可得到结论.

解答 解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,.其中第二个和第四个都是02,重复.
可知对应的数值为08,02,14,07,01,
则第5个个体的编号为01.
故选:D.

点评 本题主要考查简单随机抽样的应用,正确理解随机数法是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-6x+6,x≥0}\\{3x+4,x<0}\end{array}\right.$,若互不相等的实数x1,x2,x3,满足f(x1)=f(x2)=f(x3),则x1•x2•x3的取值范围是(-21,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.平面直角坐标系中,O为原点,A、B、C三点满足$\overrightarrow{OC}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$,则$\frac{|\overrightarrow{BC}|}{|\overrightarrow{AC}|}$=(  )
A.1B.2C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)={({log_2}x)^2}-{log_2}{x^2}+3$,当x∈[1,4]时,f(x)的最大值为m,最小值为n.
(1)若角α的终边经过点P(m,n),求sinα+cosα的值;
(2)设$g(x)=mcos(nx+\frac{π}{m})-n$,h(x)=g(x)-k在$[0,\frac{π}{2}]$上有两个不同的零点x1,x2,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有5位学生和4位老师站在一排拍照,任何两位老师不站在一起的不同排法共有(  )
A.(5!)2B.4!•5!种C.$A_6^4$•5!种D.A${\;}_{5}^{3}$•5!种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.平面内有$\overrightarrow{o{p_1}}+\overrightarrow{o{p_2}}+\overrightarrow{o{p_3}}=\overrightarrow 0$,且$|\overrightarrow{o{p_1}}|=|\overrightarrow{o{p_2}}|=|\overrightarrow{o{p_3}}|=1$,则△P1P2P3的形状是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx+$\frac{1}{x-1}$,a∈R
(Ⅰ)当a=$\frac{3}{4}$时,讨论函数f(x)的单调性;
(Ⅱ)当$a∈[\frac{1}{2},\;2\;)$时,若${x_1}∈(\;0\;,\frac{1}{2}\;)$,x2∈(2,+∞),求证:f(x2)-f(x1)≥ln2+$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆O:x2+y2=4及一点P(-1,0),Q在圆O上运动一周,PQ的中点M形成轨迹C.
(1)求轨迹C的方程;
(2)若直线PQ的斜率为1,该直线与轨迹C交于异于M的一点N,求△CMN的面积.

查看答案和解析>>

同步练习册答案