精英家教网 > 高中数学 > 题目详情
是两个不共线的向量,若,且A、B、D三点共线,则k=   
【答案】分析:利用两个向量的加减法的法则,以及其几何意义求出的坐标,把A、B、D三点共线转化为 ,即 =λ(- )=-λ+4λ,故有-λ=2,4λ=k,
解方程求得k的值.
解答:解:由题意可得 =+=-()+=(-2+)+=-
∵A、B、D三点共线,

=λ(- )=-λ+4λ
故有-λ=2,4λ=k,解得 λ=-2,k=-8.
故答案为:-8.
点评:本题主要考查证明三点共线的方法,两个向量的加减法的法则,以及其几何意义,两个向量共线的性质,体现了转化的数学思想,把A、B、D三点共线转化为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)设
e1
 , 
e2
为两个不共线的向量,
a
=-
e1
+3
e2
 , 
b
=4
e1
+2
e2
 , 
c
=-3
e1
+12
e2
,试用
b
 , 
c
为基底表示向量
a

(Ⅱ)已知向量
a
=( 3 , 2 ) , 
b
=( -1 , 2 ) , 
c
=( 4 , 1 )
,当k为何值时,
a
+k
c
 )
( 2
b
-
a
 )
?平行时它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设a、b是两个向量,对不等式0≤|a+b|≤|a|+|b|给出下列四个结论:
①不等式左端的不等号“≤”只能在a=b=0时取等号“=”;
②不等式左端的不等号“≤”只能在a与b不共线时取不等号“<”;
③不等式右端的不等号“≤”只能在a与b均非零且同向共线时取等号“=”;
④不等式右端的不等号“≤”只能在a与b不共线时取不等号“<”.

其中正确的结论有


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    4个

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省保定市八校联合体高一(上)期末数学试卷(解析版) 题型:解答题

(Ⅰ)设为两个不共线的向量,,试用为基底表示向量
(Ⅱ)已知向量,当k为何值时,?平行时它们是同向还是反向?

查看答案和解析>>

同步练习册答案