精英家教网 > 高中数学 > 题目详情
[理]已知A、B是抛物线y2=4x上两点,且
OA
OB
=0,则原点O到直线AB的最大距离为(  )
A、2B、3C、4D、8
分析:设直线AB的方程为x=my+b,代入抛物线方程消去x,求得y1+y1.设A(x1,y1),B(x2,y2),由
OA
OB
=x1x2+y1y2整理可得(m2+1)(-4b)+4m2b+b2=b2-4b=0,求得b的值,再根据原点到直线AB的距离为判断当m=0时距离最大,进而求得答案.
解答:解:设直线AB的方程为x=my+b,代入抛物线方程可得y2-4my-4b=0,设A(x1,y1),B(x2,y2),
OA
OB
=x1x2+y1y2=(my1+b)(my2+b)+y1y2=(m2+1)y1y2+mb(y1+y2)+b2=(m2+1)(-4b)+4m2b+b2=b2-4b=0,
解之得b=4或b=0(舍去),
即直线AB的方程为x=my+4,原点到直线AB的距离为d=
4
1+m2

当m=0时,d最大值=4.
故选C
点评:本题主要考查了抛物线的性质.当直线与抛物线联立时,注意用好韦达定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•临沂一模)已知A、B是抛物线x2=4y上的两点,线段AB的中点为M(2,2),则|AB|等于
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009年上海市静安、杨浦、青浦、宝山区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x,0).若x=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:8.8 抛物线(解析版) 题型:选择题

[理]已知A、B是抛物线y2=4x上两点,且=0,则原点O到直线AB的最大距离为( )
A.2
B.3
C.4
D.8

查看答案和解析>>

同步练习册答案