精英家教网 > 高中数学 > 题目详情
(2009•青浦区二模)(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.
分析:(1)由直线与抛物线联立方程组解得A(16,-8),B(0,0),由点斜式写出两条直线l1、l2的方程,从而得出直线AB的斜率;
(2)推广的评分要求分三层:
一层:点P到一般或斜率到一般,或抛物线到一般,例子:1、已知A、B是抛物线y2=4x上的相异两点.设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于抛物线y2=4x上的一定点P(
t2
4
,t)
,求直线AB的斜率等等;
二层:两个一般或推广到其它曲线;
三层:满分(对抛物线,椭圆,双曲线或对所有圆锥曲线成立的想法)
(3)点Q(x0,0),设A(x1,y1),B(x2,y2),则yi2=4xi(i=1,2).设线段AB的中点是M(xm,ym),斜率为k,写出线段AB的垂直平分线l的方程,又点Q(5,0)在直线l上,求出xm=3.最后利用0<ym2<4xm=12,即可求出中点的纵坐标的取值范围.
解答:解:(理)(1)由
x+y-8=0
y2=4x.
解得A(16,-8);由
x+y=0
y2=4x.
解得B(0,0).
由点斜式写出两条直线l1、l2的方程,l1:x+y-8=0;l2:x-y=0,所以直线AB的斜率为-
1
2
. …(4分)
(2)推广的评分要求分三层
一层:点P到一般或斜率到一般,或抛物线到一般((3分),问题(1分)、解答2分)
例:1、已知A、B是抛物线y2=4x上的相异两点.设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于抛物线
y2=4x上的一定点P(
t2
4
,t)
,求直线AB的斜率;
2、已知A、B是抛物线y2=4x上的相异两点.设过点A且斜率为-k 1的直线l1,与过点B且斜率为k的直线l2相交于抛物线
y2=4x上的一点P(4,4),求直线AB的斜率;
3、已知A、B是抛物线y2=2px(p>0)上的相异两点.设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于抛物线y2=2px(p>0)上的一定点P(
t2
2p
,t)
,求直线AB的斜率; AB的斜率的值.
二层:两个一般或推广到其它曲线((4分),问题与解答各占2分)
例:4.已知点Ρ是抛物线y2=4x上的定点.过点P作斜率分别为k、-k的两条直线l1、l2,分别交抛物线于A、B两点,试计算直线AB的斜率.
三层:满分(对抛物线,椭圆,双曲线或对所有圆锥曲线成立的想法.)((7分),问题(3分)、解答4分)
例如:5.已知抛物线y2=2px上有一定点P,过点P作斜率分别为k、-k的两条直线l1、l2,分别交抛物线于A、B两点,试计算直线AB的斜率.
过点P(x0,y0),斜率互为相反数的直线可设为y=k(x-x0)+y0,y=k(x-x0)+y0,其中y02=2px0
y=k(x-x0)+y0
y2=2px
得ky2-2py+2py0-ky02=0,所以A(
(
2p
k
-y0)
2
2p
2p
k
-y0)

同理,把上式中k换成-k得B(
(
2p
k
+y0)
2
2p
,-
2p
k
-y0)
,所以
当P为原点时直线AB的斜率不存在,当P不为原点时直线AB的斜率为-
p
y0

(3)点Q(x0,0),设A(x1,y1),B(x2,y2),则yi2=4xi(i=1,2).
设线段AB的中点是M(xm,ym),斜率为k,则k=
y2-y1
x2-x1
=
4
y1+y2
=
2
ym
.(12分)
所以线段AB的垂直平分线l的方程为y-ym=-
ym
2
(x-xm)

又点Q(5,0)在直线l上,所以-ym=-
ym
2
(5-xm)

而ym≠0,于是xm=3.                  …(13分)
(斜率kMQ=
ym-0
xm-5
,AB⊥MQ
2
ym
=-
xm-5
ym
,则xm=3  (13分)
线段AB所在直线的方程为y-ym=
2
ym
(x-3)
,…(14分)
代入y2=4x,整理得4x2-24x+ym4-12ym2+36=0…(15分)x1+x2=6,x1x2=
ym4-12ym2+36
4

设AB线段长为l,则l2=(1+k2)(x1-x2)2=(1+
4
ym2
)[(x1+x2)2-4x1x2]

=(4+ym2)(-ym2+12)=-ym4+8ym2+48…(16分)
因为0<ym2<4xm=12,所以
y
 
m
∈(-2
3
, 0)∪(0, 2
3
)
…(18分)
即:l=
-
y
4
m
+8
y
2
m
+48
.(-2
3
ym<2
3
).
点评:本小题主要考查抛物线的简单性质、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•青浦区二模)直线
3
 x-y+1=0
的倾斜角为
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(文)如果某音叉发出的声波可以用函数f(t)=0.001sin400πt描述,那么音叉声波的频率是
200
200
赫兹.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)已知数列{an},对于任意的正整数n,an=
1  (1≤n≤2009)
-2•(
1
3
)n-2009 (n≥2010)
,设Sn表示数列{an}的前n项和.下列关于
lim
n→+∞
Sn
的结论,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)已知全集U=R,集合M={x|x2-4x-5>0},N={x|x≥1},则M∩(CUN)=
{x|x<-1}
{x|x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)若复数z满足z=
3+i
i
,则|
.
 z 
|
=
10
10

查看答案和解析>>

同步练习册答案