精英家教网 > 高中数学 > 题目详情
16.已知0<θ<π,sinθ+cosθ=$\frac{1}{5}$,则角θ的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用已知结合三角函数的基本关系式,判定角θ的正弦和余弦的符号.

解答 解:因为0<θ<π,sinθ+cosθ=$\frac{1}{5}$,所以(sinθ+cosθ)2=1+2sinθcosθ=$\frac{1}{25}$,所以sinθcosθ<0,又sinθ>0,所以cosθ<0,
所以角θ的终边落在第二象限;
故选:B.

点评 本题考查了三角函数基本关系式以及符号的判定;明确角所在象限于三角函数的符号关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.30°角所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\frac{x+m}{x+1}$的反函数为f-1(x),若f-1(2)=1,则实数m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.变量x,y具有线性相关关系,当x取值为16,14,12,8时,通过观测得到y的值分别为11,9,8,5.若在实际问题中,预测当y=10时,x的近似值为(  )
(参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\hat a$=$\overline{y}$-$\hat b$$\overline{x}$)
A.14B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4.
(I)求证:平面PBD⊥平面ABCD;
(II)求直线CB与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=cos(2x+φ)+b,对任意实数x都有f(x)=f($\frac{π}{3}$-x),f($\frac{2π}{3}$)=-1,则实数b的值为(  )
A.-2或0B.0或1C.±1D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如下命题中:
①在△ABC中,若sinA>sinB,则A>B;
②若满足条件C=60°,AB=$\sqrt{3}$,BC=a的△ABC有两个,则$\sqrt{2}<a<\sqrt{3}$;
③在等比数列{an}中,若其前n项和Sn=3n+a,则实数a=-1;
④若向量$\vec a=(1,1)$,$\vec b=(1,-2)$,则向量$\vec a$在向量$\vec b$方向上的投影是$\frac{{\sqrt{5}}}{5}$;
⑤空间中长度分别为1,2,3的线段OA、OB、OC两两相互垂直,若四点O、A、B、C在球面上,则该球的体积为$\frac{{7\sqrt{14}}}{3}$π;
其中正确的命题序号有①③⑤(把你认为正确的命题序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.正方体ABCD-A'B'C'D'中,异面直线AD'与BD 所成的角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2ex+2ax-a2,a∈R.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若x≥0时,f(x)≥x2-3恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案