精英家教网 > 高中数学 > 题目详情
如图,在长方体中,是线段的中点.
(Ⅰ)求证:平面
(Ⅱ)求平面把长方体 分成的两部分的体积比.
(Ⅰ)详见解析;(Ⅱ).

试题分析:1. 第(Ⅰ)问有一点难度,需要作辅助线,这几乎是用几何法证明线面平行、线面垂直的必经之路了,对此考生要有意识.2.第(Ⅱ)问的解决比较简单,并且不依赖于第(Ⅰ)问,有的考生第(Ⅰ)问没有做出来,但第(Ⅱ)问做出来了,这是一种好的现象,说明考生能够把会做的做对了.
试题解析:(Ⅰ)证明:设的中点为,连接.

根据题意得, ,且.
∴四边形是平行四边形.
.
平面平面
平面.
(Ⅱ)解:∵

∴空间几何体的体积
.
,即平面把长方体
分成的两部分的体积比为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,棱底面,=1,的中点.

(1)证明平面平面; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,曲线处的切线过点.
(Ⅰ)求函数的解析式;
(Ⅱ)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角的正弦值为,求六棱锥高的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在中,上的高,沿折起,使.
(Ⅰ)证明:平面⊥平面
(Ⅱ)若,求三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

集合,它们之间的包含关系是                     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中(     )

A.              B.
C. AB与CD所成的角为    D. AB与CD相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体中,四边形是正方形,平面

(1)求异面直线所成角的余弦值;
(2)证明:平面
(3)求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2

(1)求证:CF∥面ABE;
(2)求证:面ABE⊥平面BDE:
(3)求三棱锥F—ABE的体积。

查看答案和解析>>

同步练习册答案