精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义域为R上的偶函数,当x≥0时,f(x)=-x2+4x,求f(x)的解析式.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:利用偶函数的定义f(-x)=f(x),把x≤0转化为-x≥0,再利用x≥0时,f(x)=-x2+4x求解.
解答: 解:∵函数f(x)是定义域为R上的偶函数,∴f(-x)=f(x),
令x<0则-x>0,又当x≥0时,f(x)=-x2+4x,
所以f(-x)=-(-x)2+4(-x)=-x2-4x
即x<0时f(x)=-x2-4x
故f(x)=
-x2+4x,x≥0
-x2-4x,x<0
点评:本题考查了偶函数的定义和函数解析式的求解问题,难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二项式(1+3x)n的各项系数和为256,则(
x
+
1
x
)n
的常数项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)对于任意x、y都有f(x+y)=f(x)+f(y)成立,且f(1)=-2,当x>0时,f(x)<0.(1)判断并证明函数f(x)的奇偶性;
(2)判断并证明f(x)在R上的单调性;
(3)当x∈[-2014,2014],求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
3n
n+1

(1)求数列{an}的第3项、第10项、第100项;
(2)判断
20
7
25
8
是否为数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f(x)在[0,+∞)上为单调减函数,且f(1-m)>f(2m),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
7
3
,an+1=3an-4n+2(n∈N*
(1)求a2,a3的值;
(2)证明数列{an-2n}是等比数列,并求出数列{an}的通项公式;
(3)若数列{bn}满足
1+2bn
bn
=
an
n
(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)的离心率为
3
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+
2
=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.
(1)求椭圆C的方程;
(2)当四边形AEBF面积取最大值时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

2011年3月,日本发生了9.0级地震,地震引起了海啸及核泄漏,某国际组织用分层抽样的方法从心理专家,核专家,地质专家三类专家中抽取若干人组成研究团队赴日本工作,有关数据见下表(单位:人).
相关人员数抽取人数
心理专家24x
核专家48y
地质专家726
(Ⅰ)求研究团队的总人数;
(Ⅱ)若从研究团队的心理专家和核专家中随机选2人撰写研究报告,求其中恰好有1人为心理专家的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x-x2
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[a,a+1]上的最大值.

查看答案和解析>>

同步练习册答案