精英家教网 > 高中数学 > 题目详情
12.某高三年级从甲(文)乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分:100分)的茎叶图如图所示,其中甲组学生的平均分是85分,乙组学生成绩的中位数是83分.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机取两名学生,求甲组至少有一名学生的概率.

分析 (1)利用茎叶图,和平均数的定义即可得到x的值,根据中位数的定义即可求出y的值,
(2)从这五名学生任意抽取两名学生共有10种情况,其中甲组至少有一名学生共有7种情况,根据概率公式计算即可.

解答 解(1)∵甲组学生的平均分是85,
∴$\frac{92+96+80+80+x+85+79+78}{7}=85$.∴x=5.…(2分)
∵乙组学生成绩的中位数是83,∴y=3.…(4分)
(2)甲组成绩在90(分)以上的学生有两名,分别记为A,B,
乙组成绩在90(分)以上的学生有三名,分别记为C,D,E.…(6分)
从这五名学生任意抽取两名学生共有10种情况:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E) …(8分)
其中甲组至少有一名学生共有7种情况:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E)
记“从成绩在90(分)以上的学生中随机抽取两名学生,甲组至少有一名学生”为事件M,
则$P(M)=\frac{7}{10}$.…(12分)

点评 本小题主要考查茎叶图、样本均值、样本中位数、概率等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,F1,F2是其两个焦点,点M、N在双曲线上.
(1)若M、N的中点为(2,$\frac{9}{2}$),求直线MN的方程.
(2)若∠F1MF2=60°时.求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中$\overrightarrow{a}$=(2cosx,1),$\overrightarrow{b}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及取得最大值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).该食品在0℃的保鲜时间是192小时,在16℃的保鲜时间是12小时,若要使该食品的保鲜时间至少是96小时,则储存温度x最大不能高于4℃.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,已知A=30°,B=120°,b=5,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=2sin(2x+\frac{π}{4})-1$,求
(1)f(x)最小正周期及单调增区间.
(2)满足不等式f(x)≥0的x取值范围的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.中心为原点,一个焦点为$F(0,5\sqrt{2})$的椭圆截直线y=3x-2所得的弦的中点的横坐标为$\frac{1}{2}$,则椭圆的方程为(  )
A.$\frac{x^2}{25}+\frac{y^2}{75}=1$B.$\frac{x^2}{75}+\frac{y^2}{25}=1$C.$\frac{{2{x^2}}}{75}+\frac{{2{y^2}}}{25}=1$D.$\frac{{2{x^2}}}{25}+\frac{{2{y^2}}}{75}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x∈(0,$\frac{π}{2}$),使得cosx≥x,则该命题的否定是(  )
A.?x∈(0,$\frac{π}{2}$),使得cos x>xB.?x∈(0,$\frac{π}{2}$),使得cos x≥x
C.?x∈(0,$\frac{π}{2}$),使得cos x<xD.?x∈(0,$\frac{π}{2}$),使得cos x<x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,曲线Γ由两个椭圆T1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$和椭圆T2:$\frac{y^2}{b^2}+\frac{x^2}{c^2}=1({b>c>0})$组成,当a,b,c成等比数列时,称曲线Γ为“猫眼曲线”.
(1)若猫眼曲线Γ过点$M({0,-\sqrt{2}})$,且a,b,c的公比为$\frac{{\sqrt{2}}}{2}$,求猫眼曲线Γ的方程;
(2)对于题(1)中的求猫眼曲线Γ,任作斜率为k(k≠0)且不过原点的直线与该曲线相交,交椭圆T1所得弦的中点为M,交椭圆T2所得弦的中点为N,求证:$\frac{{{k_{OM}}}}{{{k_{ON}}}}$为与k无关的定值;
(3)若斜率为$\sqrt{2}$的直线l为椭圆T2的切线,且交椭圆T1于点A,B,N为椭圆T1上的任意一点(点N与点A,B不重合),求△ABN面积的最大值.

查看答案和解析>>

同步练习册答案