精英家教网 > 高中数学 > 题目详情
17.设双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,F1,F2是其两个焦点,点M、N在双曲线上.
(1)若M、N的中点为(2,$\frac{9}{2}$),求直线MN的方程.
(2)若∠F1MF2=60°时.求△F1MF2的面积.

分析 (1)利用点差法,结合M、N的中点为(2,$\frac{9}{2}$),求出直线的斜率,即可求直线MN的方程.
(2)若∠F1MF2=60°,利用余弦定理,结合三角形的面积公式,即可求△F1MF2的面积.

解答 解:(1)设M(x1,y1),N(x2,y2),则x1+x2=4,y1+y2=9,
M,N代入双曲线方程,相减可得$\frac{1}{4}$(x1+x2)(x1-x2)-$\frac{1}{9}$(y1+y2)(y1-y2)=0,
∴$\frac{1}{4}$×4(x1-x2)-$\frac{1}{9}$×9(y1-y2)=0,
∴kMN=1,
∴直线MN的方程y-$\frac{9}{2}$=x-2,即2x-2y+5=0.
(2)设|F1M|=m,|F2M|=n,
∠F1MF2=60°,在△F1MF2中,由余弦定理可得4c2=m2+n2-2mncos60°
即52=(m-n)2+mn,
∴mn=36,
∴△F1MF2的面积=$\frac{1}{2}mnsin60°$=9$\sqrt{3}$.

点评 本题考查了双曲线的标准方程及其性质、余弦定理、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知三角形的顶点是A(1,-1,1),B(2,1,-1),C(-1,-1,-2),则这个三角形的面积等于(  )
A.$\frac{\sqrt{101}}{2}$B.$\frac{\sqrt{97}}{2}$C.$\frac{\sqrt{103}}{2}$D.$\frac{\sqrt{105}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+$\sqrt{2}$-1,x∈R.
(1)求函数f(x)的单调增区间;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,长方体ABCD-A1B1C1D1中,AB=16,AD=10,AA1=6,点P在棱C1D1上,且D1P=6.
(1)求三棱锥P-A1CD的体积;
(2)请作图:经过点P在上底面内画一条直线和PB垂直;
(3)请作图:经过点P作长方体的一个截面,且截面图形为正方形.(注意:要求写出作法,明确所作直线与棱的交点的位置,不需要给出证明过程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=ln(ax2+x-1)的值域为R,当且仅当(  )
A.a≥0B.a>0C.a$≥-\frac{1}{4}$D.a$<-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=f(x)的定义域为I,如果存在[a,b]⊆I,使函数f(x)在[a,b]上的值域为[ka,kb],k是正常数,那么称函数y=f(x),x∈I为闭函数.
(Ⅰ)当k=$\frac{1}{2}$时,判断函数f(x)=$\sqrt{x}$是否是闭函数?若是,则求出区间[a,b];
(Ⅱ)当k=$\frac{1}{2}$时.若函数f(x)=$\sqrt{x}$+t是闭函数,求实数t的取值范围;
(Ⅲ)当k=1时,是否存在实数m,当a+b≤2时,使函数f(x)=x2-2x+m是闭函数?若存在,求出实数m的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
①求f(x)的最小正周期和单调区间;
②用五点法作出其简图;
③求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x<3,x∈N},B={(a,b)|a+b=2,a,b∈A},试用列举法表示集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某高三年级从甲(文)乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分:100分)的茎叶图如图所示,其中甲组学生的平均分是85分,乙组学生成绩的中位数是83分.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机取两名学生,求甲组至少有一名学生的概率.

查看答案和解析>>

同步练习册答案