精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=log4(4x+1)+kx,(k∈R)为偶函数.
(1)求k的值;
(2)若方程f(x)=log4(a2x﹣a)有且只有一个根,求实数a的取值范围.

【答案】解:(I) 由题意得f(﹣x)=f(x),

化简得=2kx,
从而4(2k+1)x=1,此式在x∈R上恒成立,
∴k=-
(II)由题意,原方程化为且a2x﹣a>0
即:令2x=t>0
函数y=(1﹣a)t2+at+1的图象过定点(0,1),(1,2)如图所示:
若方程(1)仅有一正根,只有如图的三种情况,
可见:a>1,即二次函数y=(1﹣a)t2+at+1的
开口向下都可,且该正根都大于1,满足不等式(2),
当二次函数y=(1﹣a)t2+at+1的开口向上,
只能是与x轴相切的时候,
此时a<1且△=0,即a=-2-2也满足不等式(2)
综上:a>1或a=-2-2

【解析】(Ⅰ)根据偶函数可知f(x)=f(﹣x),取x=﹣1代入即可求出k的值;
(Ⅱ)根据方程有且只有一个实根,化简可得有且只有一个实根,令t=2x>0,则转化成新方程有且只有一个正根,结合函数的图象讨论a的取值,即可求出实数a的取值范围.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 是坐标原点, 分别为其左右焦点, , 是椭圆上一点, 的最大值为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于两点,且

(i)求证: 为定值;

(ii)求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为实数,p:点M(1,1)在圆(x+a)2+(y﹣a)2=4的内部; q:x∈R,都有x2+ax+1≥0.
(1)若p为真命题,求a的取值范围;
(2)若q为假命题,求a的取值范围;
(3)若“p且q”为假命题,且“p或q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函数的最小正周期为

(Ⅰ)求a的值;

(Ⅱ)求f(x)在[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=3,若a,b∈[﹣1,1],a+b≠0时,有>0成立.
(1)判断f(x)在[﹣1,1]上的单调性,并证明;
(2)解不等式:f(x+)<f();
(3)若当a∈[﹣1,1]时,f(x)≤m2﹣2am+3对所有的x∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1 , y1)和B(x2 , y2)(x1<x2)两点,且|AB|=9,
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若= , 求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,若f(f(a))=2,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列曲线的标准方程:
(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.
(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段,下表是初赛成绩(得分均为整数,满分为100分)的频率分布表.

分组(分数段)

频数(人数)

频率

0.16

17

19

0.38

合计

50

1

(Ⅰ)求频率分布表中 的值;

(Ⅱ)决赛规则如下:参加决赛的每位同学依次口答3道判断题,答对3道题获得一等奖,答对2道题获得二等奖,答对1道题获得三等奖,否则不得奖.若某同学进入决赛,且其每次答题回答正确与否均是等可能的,试列出他回答问题的所有可能情况,并求出他至少获得二等奖的概率.

查看答案和解析>>

同步练习册答案