精英家教网 > 高中数学 > 题目详情
14.若a,b∈R,则复数(a2-4a+5)+(-b2+2b-6)i所对应的点一定落在第四象限.

分析 根据复数的几何意义,求出点的坐标进行判断即可.

解答 解:复数对应点的坐标为((a2-4a+5),(-b2+2b-6)),
∵a2-4a+5=(a-2)2+1>0,-b2+2b-6=-(b-1)2-5<0,
∴复数对应点的坐标在第四象限,
故答案为:四.

点评 本题主要考查复数的几何意义的应用,结合配方法,判断点的坐标的符号是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系.
(Ⅰ)写出C1的极坐标方程;
(Ⅱ)设曲线C2:$\frac{{x}^{2}}{4}$+y2=1经伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=y}\end{array}\right.$后得到曲线C3,射线θ=$\frac{π}{3}$(ρ>0)分别与C1和C3交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系中,A(-2,0),B(2,0),M(8,0),N(0,8),若$\overrightarrow{AP}$•$\overrightarrow{BP}$=5,$\overrightarrow{OQ}$=($\frac{1}{3}$-t)$\overrightarrow{OM}$+($\frac{2}{3}$+t)$\overrightarrow{ON}$(t为实数),则|$\overrightarrow{PQ}$|的最小值是(  )
A.4$\sqrt{2}$-3B.4$\sqrt{2}$+3C.4$\sqrt{2}$-1D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上单调递增,求ω的取值范围;
(2)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象.
①求函数g(x)的解析式,并用“五点法”作出该函数在一个周期内的图象;
②对任意a∈R,求函数y=g(x)在区间[a,a+10π]上零点个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=a+$\frac{2}{{{2^x}-1}}$(a∈R)是奇函数.
(Ⅰ)求函数f(x)的定义域及实数a的值;
(Ⅱ)若函数g(x)满足g(x+2)=-g(x)且x∈(0,2]时,g(x)=f(x),求g(-5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2-1,求f(x)在R上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求实数m取什么值时,复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.海上两小岛A,B到海洋观察站C的距离都是10km,小岛A在观察站C的北偏东20°,小岛B在观察站C的南偏东40°,则A与B的距离是(  )
A.10kmB.$10\sqrt{2}km$C.$10\sqrt{3}km$D.20km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前n项和为Sn,公差d=$\frac{π}{8}$,当Sn取最小值时,n的最大值为10,则数列的首项a1的取值范围是(  )
A.$(-\frac{5π}{8}\;,\;\;-\frac{9π}{16}]$B.$(-\frac{5π}{4}\;,\;\;-\frac{9π}{8}]$C.$[-\frac{5π}{8}\;,\;\;-\frac{9π}{16}]$D.$[-\frac{5π}{4}\;,\;\;-\frac{9π}{8}]$

查看答案和解析>>

同步练习册答案