精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2-1,求f(x)在R上的表达式.

分析 根据函数奇偶性的性质,分别求出当x=0和x<0时的解析式即可.

解答 解:∵函数f(x)是奇函数,
∴f(0)=0,
若x<0,则-x>0,
∵当x>0时,f(x)=x3+2x2-1,
∴当x<0时,f(-x)=-x3+2x2-1=-f(x),
则当x<0时,f(x)=x3-2x2+1,
即f(x)=$\left\{\begin{array}{l}{{x}^{3}+2{x}^{2}-1,}&{x>0}\\{0,}&{x=0}\\{{x}^{3}-2x+1,}&{x<0}\end{array}\right.$.

点评 本题主要考查函数解析式的求解,根据函数奇偶性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥BC,AD⊥CD,PA=AD,△BCD是边长为$\sqrt{3}$的正三角形.
(1)连接AC与BD交于点O,点M是PB的中点,求证:OM∥平面PAD;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知角α的终边经过点P(12,5),则tanα的值为$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a,b∈R,且a>b,则(  )
A.|a|>|b|B.lg(a-b)>0C.${({\frac{1}{2}})^a}<{({\frac{1}{2}})^b}$D.2a>3b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a,b∈R,则复数(a2-4a+5)+(-b2+2b-6)i所对应的点一定落在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=acos2x+(a-1)(cosx+1),记|f(x)|的最大值为A.
(1)当a=2时,求A;
(2)当a>0时,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三个不等式:①ab>0;②bc>ad;③$\frac{c}{a}>\frac{d}{b}$.以其中两个作为条件,余下一个作为结论,则可以组成正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=(ax-1)(x+b),如果不等式f(x)>0的解集是(-1,3),则不等式f(-x)<0的解集是(  )
A.(-∞,-1)∪(3,+∞)B.(-3,1)C.(-∞,-3)∪(1,+∞)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,用A,B,C,D四类不同的元件连接成系统(A,B,C,D是否正常工作是相互独立的),当元件A,B至少有一个正常工作,且C,D至少有一个正常的工作时,系统正常工作.已知元件A,B,C,D正常工作的概率依次为0.80,0.90,0.90,0.70,则系统正常工作的概率为(  )
A.0.9994B.0.9506C.0.4536D.0.5464

查看答案和解析>>

同步练习册答案