精英家教网 > 高中数学 > 题目详情
11.已知三个不等式:①ab>0;②bc>ad;③$\frac{c}{a}>\frac{d}{b}$.以其中两个作为条件,余下一个作为结论,则可以组成正确命题的个数是(  )
A.0B.1C.2D.3

分析 根据不等式的关系进行讨论求解即可.

解答 解:$\frac{c}{a}>\frac{d}{b}$等价为$\frac{c}{a}$-$\frac{d}{b}$=$\frac{bc-ad}{ab}$>0,
若①②⇒③,当ab>0,bc>ad时$\frac{c}{a}>\frac{d}{b}$成立,此时为真命题,
若①③⇒②,当ab>0,$\frac{c}{a}>\frac{d}{b}$时,得bc-ad>0,即bc>ad成立,此时为真命题,
若②③⇒①,当$\frac{c}{a}>\frac{d}{b}$.bc>ad时,则方面ab>0,此时为真命题,
故正确命题的个数为3个,
故选:D.

点评 本题主要考查命题的真假判断,根据不等式的性质分别进行讨论是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.平面直角坐标系中,若函数y=f(x)的图象将一个区域D分成面积相等的两部分,则称f(x)等分D,若D={(x,y)||x|+|y|≤1},则下列函数等分区域D的有①②(将满足要求的函数的序号写在横线上).
①y=sinx•cosx,②y=x3+$\frac{1}{2016}$x,③y=ex-1,④y=|x|-$\frac{3}{4}$,⑤y=-$\frac{9}{2}{x^2}+\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上单调递增,求ω的取值范围;
(2)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象.
①求函数g(x)的解析式,并用“五点法”作出该函数在一个周期内的图象;
②对任意a∈R,求函数y=g(x)在区间[a,a+10π]上零点个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2-1,求f(x)在R上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求实数m取什么值时,复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在递增的等差数列{an}中,已知a2+a3=10,a1•a4=16
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an=$\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+\frac{b_3}{{{3^3}+1}}+…+\frac{b_n}{{{3^n}+1}}$,求数列{bn}的通项公式;
(3)令cn=$\frac{{{a_n}{b_n}}}{4}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.海上两小岛A,B到海洋观察站C的距离都是10km,小岛A在观察站C的北偏东20°,小岛B在观察站C的南偏东40°,则A与B的距离是(  )
A.10kmB.$10\sqrt{2}km$C.$10\sqrt{3}km$D.20km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列关于逻辑结构与流程图的说法中正确的是(  )
A.一个流程图一定会有顺序结构B.一个流程图一定含有条件结构
C.一个流程图一定含有循环结构D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若两个正实数x,y满足$\frac{1}{x}+\frac{2}{y}$=1,且不等式x+$\frac{y}{2}$<m2-3m有解,则实数m的取值范围是(-∞,-1)∪(4,+∞).

查看答案和解析>>

同步练习册答案