精英家教网 > 高中数学 > 题目详情
在△ABC中,sinA:sinB:sinC=k:k+1:2k(k>0),求k的取值范围.
考点:余弦定理,正弦定理
专题:解三角形
分析:已知等式利用正弦定理化简求出三边之比,利用三角形三边关系求出k的范围即可.
解答: 解:∵在△ABC中,sinA:sinB:sinC=k:k+1:2k(k>0),
∴由正弦定理化简得:a:b:c=k:k+1:2k(k>0),
由三角形三边关系得:k+2k>k+1,且 2k-(k+1)<k,
解得:k>
1
2

则k的取值范围为(
1
2
,+∞).
点评:此题考查了正弦、余弦定理,以及三角形三边关系,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4px(p>0)与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦点F,点A是两个曲线的一个交点,O为坐标原点,且OA=FA,则双曲线的离心率的平方为(  )
A、2
B、
13-
153
2
C、
13-
153
2
13+
153
2
D、
13+
153
2

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,判断三角形的形状
(1)在△ABC中,
1-cosA
1-cosB
=
a
b

(2)在△ABC中,
a3+b3-c3
a+b-c
=c2
且sinAsinB=
3
4

(3)在ABC中,(a2-b2)sin(A+B)=(a2+b2)sin(A-B).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+mx+8y-8=0和圆C2:x2+y2-4x+ny-2=0的公共弦AB所在直线方程为x+2y-1=0,两圆C1,C2的圆心距为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=(x2-3x+1)ex的导数,并在函数曲线上求出点,使得曲线在这些点处的切线与x轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b是异面直线,且a⊥b,
e 1
e 2
分别为取直线a、b上的单位向量,且a=2
e1
+3
e 2
,b=k
e 1
-4
e 2
,a⊥b,则实数k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角θ的终边上有一点P(x,-1)(x≠0),且tanθ=-x,求sinθ,cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足|
a
|=
3
,|
b
|=2,
a
b
=-3,则|
a
+2
b
|=(  )
A、1
B、
7
C、4+
3
D、2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数份f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x-2)
(1)求g(x)的解析式及定义域;
(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案