精英家教网 > 高中数学 > 题目详情
(2012•山东)设变量x,y满足约束条件
x+2y≥2
2x+y≤4
4x-y≥-1
,则目标函数z=3x-y的取值范围是(  )
分析:作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围
解答:解:作出不等式组表示的平面区域,如图所示
由z=3x-y可得y=3x-z,则-z为直线y=3x-z在y轴上的截距,截距越大,z越小
结合图形可知,当直线y=3x-z平移到B时,z最小,平移到C时z最大
4x-y=-1
2x+y=4
可得B(
1
2
,3),zmin=-
3
2

x+2y=2
2x+y=4
可得C(2,0),zmax=6
-
3
2
≤z≤6

故选A
点评:本题考查画不等式组表示的平面区域、考查数形结合求函数的最值.解题的关键是准确理解目标函数的几何意义
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•山东)设命题p:函数y=sin2x的最小正周期为
π
2
;命题q:函数y=cosx的图象关于直线x=
π
2
对称.则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)设a>0且a≠1,则“函数f(x)=ax在R上是减函数”,是“函数g(x)=(2-a)x3在R上是增函数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)设函数f(x)=
1
x
,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)设函数f(x)=
1
x
,g(x)=-x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•山东)设a>0,若曲线y=
x
与直线x=a,y=0所围成封闭图形的面积为a2,则a=
4
9
4
9

查看答案和解析>>

同步练习册答案