分析 (1)利用等比数列的通项公式即可得出;
(2)对n分类讨论,利用等比数列的求和公式即可得出.
解答 解:(1)设{an}的首项为a1,公比为q,
∴${({a_1}{q^4})^2}={a_1}{q^9}$,解得a1=q.
又∵2(an+an+2)=5an+1,∴$2({a_n}+{a_n}{q^2})=5{a_n}q$,
则2(1+q2)=5q,2q2-5q+2=0,解得$q=\frac{1}{2}$(舍)或q=2.
∴${a_n}=2×{2^{n-1}}={2^n}$.
(2)∵${c_n}={(-1)^n}+{2^n}$,n为偶数时,${S_n}=(-1+1-1+…-1+1)+\frac{{2(1-{2^n})}}{1-2}=-2+{2^{n+1}}$;
n为奇数时,${S_n}=(-1+1+…1-1)+\frac{{2(1-{2^n})}}{1-2}=-1-2+{2^{n+1}}={2^{n+1}}-3$.
∴Sn=$\left\{\begin{array}{l}{{2}^{n+1}-2,n为偶数}\\{{2}^{n+1}-3,n为奇数}\end{array}\right.$.
点评 本题考查了等比数列的通项公式、求和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,e) | C. | (2,e) | D. | ($\frac{e}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=cosx,g(x)=2 | B. | $f(x)={log_2}({{x^2}-2x+5}),g(x)=sin\frac{π}{2}x$ | ||
| C. | $f(x)=\sqrt{4-{x^2}},g(x)=\frac{3}{4}x+\frac{15}{4}$ | D. | $f(x)=x+\frac{2}{x},g(x)=lnx+2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 专业 性别 | 非统计专业 | 统计专业 | 合计 |
| 男 | |||
| 女 | |||
| 合计 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com