精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥平面ABCD,PC与平面ABCD所成角的大小为arctan2,M为PA的中点.
(1)求四棱锥P-ABCD的体积;
(2)求异面直线BM与PC所成角的大小(结果用反三角函数表示).

(本题满分(14分),第1小题(6分),第2小题8分)
解:(1)连接AC,因为PA⊥平面ABCD,
所以∠PCA为PC与平面ABCD所成的角…(2分)
由已知,,而AC=2,
所以PA=4.…(3分)
底面积,…(4分)
所以,四棱锥P-ABCD的体积.…(6分)
(2)连接BD,交AC于点O,连接MO,
因为M、O分别为PA、AC的中点,所以MO∥PC,
所以∠BMO(或其补角)为异面直线BM与PC所成的角.…(8分)
在△BMO中,,…(10分)
(以下由余弦定理,或说明△BMO是直角三角形求得)
.…(13分)
所以,异面直线BM与PC所成角的大小为(或另外两个答案).…(14分)
分析:(1)先根据PA⊥平面ABCD以及PC与平面ABCD所成角的大小为arctan2,求出PA=4;再求出下底面面积即可求四棱锥P-ABCD的体积;
(2)连接BD,交AC于点O,连接MO可得MO∥PC;所以∠BMO(或其补角)为异面直线BM与PC所成的角;然后在△BMO是直角三角形求得∠BMO即可.
点评:本题主要考查棱锥的体积计算以及异面直线及其所成的角.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案