精英家教网 > 高中数学 > 题目详情
9.已知一定点A(4,-3),B为圆(x+1)2+y2=4上的动点,求线段AB中点M的轨迹方程,并说明轨迹是什么图形.

分析 分别设出M,B的坐标,利用中点坐标公式把B的坐标用M的坐标表示,然后代入已知圆的方程得答案.

解答 解:设M(x,y),B(m,n),
∵M是AB的中点,
∴$\left\{\begin{array}{l}x=\frac{m+4}{2}\\ y=\frac{n-3}{2}\end{array}\right.⇒\left\{\begin{array}{l}m=2x-4\\ n=2y+3\end{array}\right.$,
又∵B在(x+1)2+y2=4上,即(2x-4+1)2+(2y+3)2=4,
化简为${(x-\frac{3}{2})^2}+{(y+\frac{3}{2})^2}=1$,
∴M点的轨迹方程为${(x-\frac{3}{2})^2}+{(y+\frac{3}{2})^2}=1$,
该方程表示的是圆心为$(\frac{3}{2},-\frac{3}{2})$,半径为1的圆.

点评 本题考查轨迹方程的求法,训练了利用代入法求曲线的方程,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|x-1|+|x+1|.
(Ⅰ)解不等式f(x)≤4;
(Ⅱ)当f(x)≤4时,|x+3|+|x+a|<x+6,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{a}$=(-2$\sqrt{3}$,2),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,且$\overrightarrow{a}$•$\overrightarrow{b}$=-4.
(1)求|$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$=x$\overrightarrow{b}$+y$\overrightarrow{c}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$,|$\overrightarrow{c}$|=2$\sqrt{2}$,求$\overrightarrow{b}$与$\overrightarrow{c}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-$\frac{π}{3}$)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求满足下列条件的曲线方程
(1)已知抛物线顶点是双曲线16x2-9y2=144的中心,准线过双曲线的左顶点,且垂直于坐标轴,求该抛物线的方程.
(2)已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1有相同焦点,直线y=$\sqrt{3}$x为C的一条渐近线,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a,b,c,d均为正数,且a-c=d-b,证明:
(Ⅰ)若ab>cd,则$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$;
(Ⅱ)$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$是|a-b|<|c-d|的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若直线y=kx-2与抛物线y2=8x交于A、B两点,且AB中点的横坐标为2,则此直线的斜率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=|x-m|+|x+m|,x∈R.记不等式f(2)>5的解集为M.
(1)若m0∈M,求m02+$\frac{64}{{{m}_{0}}^{2}+1}$的最小值;
(2)若a,b∈M,证明:16a2b2+625>100a2+100b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy,设点M(x0,y0)是椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1上一点,从原点O向圆M:(x-x02+(y-y02=r2作两条切线分别与椭圆C交于点P、Q,直线OP,OQ的斜率分别记为k1,k2
(1)若圆M与x轴相切于椭圆C的左焦点,求圆M的方程;
(2)若r=$\frac{4\sqrt{5}}{5}$,
①求证:k1k2为定值;
②求|OP|•|OQ|的最大值.

查看答案和解析>>

同步练习册答案