精英家教网 > 高中数学 > 题目详情
已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
(1)y2=4x;(2)点N坐标为.

试题分析:本题主要考查抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,利用抛物线的准线,得到M点的坐标,利用圆的方程得到圆心C的坐标,在中,可求出,在中,利用相似三角形进行角的转换,得到的长,而,从而解出P的值,即得到抛物线的标准方程;第二问,设出N点的坐标,利用N、C点坐标写出圆C的方程,利用点C的坐标写出圆C的方程,两方程联立,由于P、Q是两圆的公共点,所以联立得到的方程即为直线PQ的方程,而O点在直线上,代入点O的坐标,即可得到s、t的值,即得到N点坐标.
试题解析:(1)由已知得C(2,0).
ABx轴交于点R,由圆的对称性可知,
于是
所以,即p=2.
故抛物线E的方程为y2=4x.          5分
 
(2)设N(st).
PQNC为直径的圆D与圆C的两交点.
D方程为
x2y2-(s+2)xty+2s=0.       ①
又圆C方程为x2y2-4x+3=0.       ②
②-①得(s-2)xty+3-2s=0.       ③  9分
PQ两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.
因为直线PQ经过点O,所以3-2s=0,
故点N坐标为.       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A、B为抛物线C:y2 = 4x上的两个动点,点A在第一象限,点B在第四象限l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.
(1)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;
(2)设C、D为直线l1、l2与直线x = 4的交点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P是抛物线y2=2x上的动点,点P到准线的距离为d,且点P在y轴上的射影是M,点A(,4),则|PA|+|PM|的最小值是
A.
B.4
C.
D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线型拱桥的顶点距水面米时,量得水面宽为米.则水面升高米后,水面
宽是____________米(精确到米).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知抛物线的方程为,过点作直线与抛物线相交于两点,点的坐标为,连接,设轴分别相交于两点.如果的斜率与的斜率的乘积为,则的大小等于.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点到准线的距离是(   )
A.2B.1 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的准线方程是  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的准线为(    )
A.x= 8B.x=-8
C.x=4D.x=-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点坐标是_____________.

查看答案和解析>>

同步练习册答案