精英家教网 > 高中数学 > 题目详情

已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.

(1)求y=f(x)的表达式;

(2)若任意实数x都满足等式f(xg(x)+anx+bn=xn+1g(x)]为多项式,n∈N*),试用t表示anbn

(3)设圆Cn的方程为(xan)2+(ybn)2=rn2,圆CnCn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rnSn.

(1) f(x)=x2-(t+2)x+t+1, (2) an=[(t+1)n+1-1],bn=[1-(t+1n), (3) rn=, Sn=π(r12+r22+…+rn2)=[(t+1)2n-1]


解析:

(1)设f(x)=a(x)2,由f(1)=0得a=1.

f(x)=x2-(t+2)x+t+1.

(2)将f(x)=(x-1)[x-(t+1)]代入已知得:

(x-1)[x-(t+1)]g(x)+anx+bn=xn+1

上式对任意的x∈R都成立,

x=1和x=t+1分别代入上式得 

t≠0,

解得an=[(t+1)n+1-1],bn=[1-(t+1n)

(3)由于圆的方程为(xan)2+(ybn)2=rn2

又由(2)知an+bn=1,故圆Cn的圆心On在直线x+y=1上,

又圆Cn与圆Cn+1相切,故有rn+rn+1=an+1an|=(t+1)n+1

设{rn}的公比为q,则

                                                   

       ②÷①得q==t+1,代入①得rn=

Sn=π(r12+r22+…+rn2)=[(t+1)2n-1].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)(x∈R)的图象过点(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函数y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)图象的顶点是(-1,3),又f(0)=4,一次函数y=g(x)的图象过(-2,0)和(0,2).
(1)求函数y=f(x)和函数y=g(x)的解析式;
(2)求关于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象关于直线x=2对称,且在x轴上截得的线段长为2.若f(x)的最小值为-1,求:
(1)函数f(x)的解析式;
(2)函数f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象如图所示:
(1)求函数y=f(x)的解析式;
(2)根据图象写出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有两个不相等的实数根,根据函数图象及变换知识,求k的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数y=f(x-
12
)
是偶函数.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函数g(x)在[t,2]上的最大值和最小值;
(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案