精英家教网 > 高中数学 > 题目详情
1.曲线y=(2x-3)3在点(2,1)处的切线与x轴、直线x=2所围成的三角形的面积为多少?

分析 求出导数,求得切线的斜率和切线的方程,令y=0,以及x=2,可得交点,再由三角形的面积公式计算即可得到所求值.

解答 解:y=(2x-3)3的导数为y′=6(2x-3)2
即有点(2,1)处的切线的斜率为6,
则点(2,1)处的切线方程为y-1=6(x-2),
即有y=6x-11,
令y=0,可得x=$\frac{11}{6}$;
令x=2,可得y=1,
即有切线与x轴、直线x=2所围成的三角形的面积为
$\frac{1}{2}$•(2-$\frac{11}{6}$)•1=$\frac{1}{12}$.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义和直线方程的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知{an}为等差数列,a4=3,公差d=2,写出这个数列的第7项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l:2x-3y+1=0,求直线m:3x-2y-6=0关于直线1的对称直线m′的一般方程9x-46y+102=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点T(-1,1)在抛物线y2=2px(p>0)的准线上.
(1)求该抛物线方程;
(2)若AB是抛物线过点C(0,-3)的任一弦,点M是抛物线准线与x轴的交点,直线AM,BM分别与抛物线交于P,Q两点,求证:直线PQ的斜率为定值,并求|PQ|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α为锐角,cos(α+$\frac{π}{4}$)=-$\frac{4}{5}$,则sin(α-$\frac{π}{4}$)=(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设△ABC内角A,B,C的对边分别为a,b,c,已知2cos(B+C)+cos2A=一$\frac{3}{2}$.
(1)求A的大小
(2)若a=$\sqrt{3}$,b+c=3,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某同学用计算器产生了两个[0,1]之间的均匀随机数,分别记作x,y,当y<x2时,x>$\frac{1}{2}$的概率是(  )
A.$\frac{7}{24}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知焦点在y轴上的椭圆的离心率为$\frac{{2\sqrt{2}}}{3}$,且$(0,2\sqrt{2})$是其中一个焦点.
(1)求该椭圆的标准方程;
(2)过点P(-1,0)的动直线l与中心在原点,半径为2的圆O交于A,B两点,C是椭圆上一点,且$\overrightarrow{AB}•\overrightarrow{CP}$=0,当|$\overrightarrow{CP}$|取得最大值时,求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),动点C满足条件:△ABC的周长为$2+2\sqrt{2}$,记动点C的轨迹为曲线W.
(1)求W的方程;
(2)设过点B的直线l与曲线W交于M,N两点,如果$|{MN}|=\frac{{4\sqrt{2}}}{3}$,求直线l的方程.

查看答案和解析>>

同步练习册答案