精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-2x-3=0},B={x2+2x+a=0},B∩A=B,求a的取值范围.
考点:交集及其运算
专题:集合
分析:求解一元二次方程化简集合A,由B∩A=B得B⊆A,然后分B为空集、单元素集合、双元素集合分类求解满足条件的a的范围,最后取并集得答案.
解答: 解:由x2-2x-3=0,解得x=-1或x=3.
∴A={x|x2-2x-3=0}={-1,3},
B={x2+2x+a=0},
由B∩A=B,得B⊆A.
若22-4a<0,即a>1,B=∅,满足B⊆A;
若22-4a=0,即a=1,B={-1},满足B⊆A;
若22-4a>0,即a<1,要使B⊆A,则-1,3为方程x2+2x+a=0的两根,此时不成立.
∴满足B∩A=B的a的取值范围是a≥1.
点评:本题考查了集合间的关系,考查了交集及其运算,考查了分类讨论的数学思想方法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆x2+(y-1)2=2上任一点P(x,y),其坐标均使得不等式x+y+m≥0恒成立,则 实数m的取值范围是(  )
A、[1,+∞)
B、(-∞,1]
C、[-3,+∞)
D、(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

P为椭圆
x2
25
+
y2
9
=1上一点,F1,F2为左右焦点,若∠F1PF2=60°.
(1)求△F1PF2的面积;
(2)求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)在[0,3]上单调递增,且对于任意的x,y∈R都有f(x+y)=f(x)f(3-y)+f(3-x)f(y)
(1)求f(0)和f(1)的值;
(2)求证:f(x)为周期函数;
(3)求满足不等式f(4x+1)≥
1
2
的实数x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
xlnx
1+x
,在x=x0处取得极值.
(1)证明:f(x0)=-x0
(2)是否存在实数a,使得对任意x∈(0,+∞),f(x)≥
a(x-1)
x
?若存在,求a的所有值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-alnx,则f(x)在[1,+∞)上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.
(1)写出每人需交费用y关于人数x的函数;
(2)旅行团人数为多少时,旅行社可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA、PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是(  )
A、
12
5
B、
12
5
13
C、
3
5
13
D、
2
3
13

查看答案和解析>>

科目:高中数学 来源: 题型:

①正相关,②负相关,③不相关,则下列散点图分别反映的变量是(  )
A、①②③B、②③①
C、②①③D、①③②

查看答案和解析>>

同步练习册答案