精英家教网 > 高中数学 > 题目详情
已知圆x2+(y-1)2=2上任一点P(x,y),其坐标均使得不等式x+y+m≥0恒成立,则 实数m的取值范围是(  )
A、[1,+∞)
B、(-∞,1]
C、[-3,+∞)
D、(-∞,-3]
考点:圆方程的综合应用
专题:直线与圆
分析:由x+y+m≥0,得只须求出-x-y的最大值即可,由此能求出实数m的取值范围.
解答: 解:∵x+y+m≥0,即m≥-x-y恒成立,
∴只须求出-x-y的最大值即可,
∵1=
x2+(y-1)2
2
≥(
x+y-1
2
2
∴(x+y-1)2≤4,解得-2≤x+y-1≤2,即-1≤x+y≤3,
∴-3≤-x-y≤1,
∴-x-y的最大值是1,
则m≥1,所以实数m的取值范围是[1,+∞).
故选:A.
点评:本题考查实数的取值范围的求法,是中档题,解题时要注意圆的性质和等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两数
2
-1
2
+1
的等差中项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,1),B(4,1),C(3,3),求△ABC的垂心H的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB上一点
(Ⅰ) 当点E在AB上移动时,三棱锥D-D1CE的体积是否变化?若变化,说明理由;若不变,求这个三棱锥的体积;
(Ⅱ) 当点E在AB上移动时,是否始终有D1E⊥A1D,证明你的结论;
(Ⅲ)若E是AB的中点,求二面角D1-EC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥的高比底面边长小4,且其外接球的表面积为196π,则该正三棱锥的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤x≤a,求函数f(x)=3x4-8x3-6x2+24x的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

地面上有两个同心圆(如图),其半径分别为1,2.若向图中最大的圆内投点且投到图中阴影区域的概率为
5
8
,则两直线所夹锐角的弧度数为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3x2+5的单调减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-3=0},B={x2+2x+a=0},B∩A=B,求a的取值范围.

查看答案和解析>>

同步练习册答案