精英家教网 > 高中数学 > 题目详情
已知点A(1,1),B(4,1),C(3,3),求△ABC的垂心H的坐标.
考点:直线的一般式方程与直线的垂直关系,两条直线的交点坐标
专题:平面向量及应用
分析:设△ABC的垂心H的坐标为(x,y),结合已知求出
AH
BH
AC
BC
的坐标,根据垂心的定义可得:
AH
BC
BH
AC
,即
AH
BC
=0,且
BH
AC
=0,进而根据向量数量积运算公式,构造关于x,y的方程组,解得答案.
解答: 解:设△ABC的垂心H的坐标为(x,y),
∵A(1,1),B(4,1),C(3,3),
AH
=(x-1,y-1),
BH
=(x-4,y-1),
AC
=(2,2),
BC
=(-1,2),
AH
BC
BH
AC

AH
BC
=0,且
BH
AC
=0,
-(x-1)+2(y-1)=0
2(x-4)+2(y-1)=0

解得:
x=3
y=2

故△ABC的垂心H的坐标为(3,3)
点评:本题考查的知识点是向量在平面几何中的应用,向量垂直的充要条件,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)为偶函数,且当x<0时,f(x)=x2+
1
x
,则f(2)=(  )
A、
7
2
B、2
C、-
7
2
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)在R上单调的是奇函数,若f(k•log2t)+f(log2t-log22t-2)>0,?t>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均不为零的数列{an}的前n项和为Sn,且4Sn=an•an+1+1(n∈N*),其中a1=1.
(1)求证:a1,a3,a5成等差数列;
(2)求证:数列{an}是等差数列;
(3)设数列{bn}满足2bn=1+
1
an
(n∈N*)
,且Tn为其前n项和,求证:对任意正整数n,不等式2Tn>log2an+1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x
+1
x-1
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A,B,C的对边分别为a,b,c,2c cosB=2a-
3
b.
(I)求C;
(Ⅱ)若cosB=
2
3
,求cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
4
+y2=1,
(1)若直线l过点Q(1,1),交椭圆C于A、B两点,求直线l的方程使得Q为AB的中点;
(2)定点M(0,2),P为椭圆C上任意一点,求线段PM的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+(y-1)2=2上任一点P(x,y),其坐标均使得不等式x+y+m≥0恒成立,则 实数m的取值范围是(  )
A、[1,+∞)
B、(-∞,1]
C、[-3,+∞)
D、(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

P为椭圆
x2
25
+
y2
9
=1上一点,F1,F2为左右焦点,若∠F1PF2=60°.
(1)求△F1PF2的面积;
(2)求P点的坐标.

查看答案和解析>>

同步练习册答案