精英家教网 > 高中数学 > 题目详情
如图,长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB上一点
(Ⅰ) 当点E在AB上移动时,三棱锥D-D1CE的体积是否变化?若变化,说明理由;若不变,求这个三棱锥的体积;
(Ⅱ) 当点E在AB上移动时,是否始终有D1E⊥A1D,证明你的结论;
(Ⅲ)若E是AB的中点,求二面角D1-EC-D的正切值.
考点:二面角的平面角及求法,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离,空间角
分析:(Ⅰ)当点E在AB上移动时,三棱锥D-D1CE的体积不变,由VD-D1CE=VD1-DCE,能求出这个三棱锥的体积.(Ⅱ)当点E在AB上移动时,始终有D1E⊥A1D.连结AD1,由已知得A1D⊥AD1 ,A1D⊥AB,从而A1D⊥平面AD1E,由此能证明D1E⊥A1D.
(Ⅲ)由已知得DE⊥EC,D1D⊥EC,从而CE⊥平面D1DE,∠D1ED是二面角D1-EC-D的平面角,由此能求出二面角D1-EC-D的正切值.
解答: (本题满分12分)
解:(Ⅰ)当点E在AB上移动时,三棱锥D-D1CE的体积不变,
S△DCE=
1
2
DC×AD
=
1
2
×2×1=1
,DD1=1,
VD-D1CE=VD1-DCE=
1
3
S△DCE×DD1
=
1
3
×1×1
=
1
3
.(4分)
(Ⅱ)当点E在AB上移动时,始终有D1E⊥A1D,
证明:连结AD1,四边形ADD1A1是正方形,∴A1D⊥AD1 
∵AE⊥平面ADD1A1,A1D?平面ADD1A1,∴A1D⊥AB,
∵AB∩AD1=A,AB?平面AD1E,AD1?平面AD1E,
∴A1D⊥平面AD1E,
∵D1E?平面AD1E,∴D1E⊥A1D.(8分)
(Ⅲ)∵E为AB中点,∴DE=EC=
2

而CD=2,∴DE2+EC2=DC2
∴DE⊥EC,∵DD1⊥平面ABCD,CE?平面ABCD,∴D1D⊥EC,
∵DD1∩DE=D,DD1?平面D1DE,DE?平面D1DE,
∴CE⊥平面D1DE,
∵D1E?平面D1DE,∴CE⊥D1E,
∴∠D1ED是二面角D1-EC-D的平面角,
tan∠D1ED=
D1D
DE
=
1
2
=
2
2

∴二面角D1-EC-D的正切值为
2
2
.(12分)
点评:本题考查三棱锥体积的求法,考查异面直线垂直的证明,考查二面角的正切值的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知cosα=
1
5
,求sinα,tanα的值;
(2)已知角α的终边过点P(4a,-3a)(a<0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均不为零的数列{an}的前n项和为Sn,且4Sn=an•an+1+1(n∈N*),其中a1=1.
(1)求证:a1,a3,a5成等差数列;
(2)求证:数列{an}是等差数列;
(3)设数列{bn}满足2bn=1+
1
an
(n∈N*)
,且Tn为其前n项和,求证:对任意正整数n,不等式2Tn>log2an+1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A,B,C的对边分别为a,b,c,2c cosB=2a-
3
b.
(I)求C;
(Ⅱ)若cosB=
2
3
,求cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
4
+y2=1,
(1)若直线l过点Q(1,1),交椭圆C于A、B两点,求直线l的方程使得Q为AB的中点;
(2)定点M(0,2),P为椭圆C上任意一点,求线段PM的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CC1的中点,求异面直线AE和BF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+(y-1)2=2上任一点P(x,y),其坐标均使得不等式x+y+m≥0恒成立,则 实数m的取值范围是(  )
A、[1,+∞)
B、(-∞,1]
C、[-3,+∞)
D、(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c满足a2+b2+c2=ab+bc+ac,则△ABC一定是(  )
A、等边三角形
B、直角三角形
C、锐角三角形
D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)在[0,3]上单调递增,且对于任意的x,y∈R都有f(x+y)=f(x)f(3-y)+f(3-x)f(y)
(1)求f(0)和f(1)的值;
(2)求证:f(x)为周期函数;
(3)求满足不等式f(4x+1)≥
1
2
的实数x的集合.

查看答案和解析>>

同步练习册答案