如图,在四棱锥PABCD中,PA⊥底面ABCD,PC⊥AD,底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB.![]()
(1)求证:平面PAB⊥平面PCB;
(2)求证:PD∥平面EAC.
科目:高中数学 来源: 题型:解答题
在三棱锥SABC中,SA⊥平面ABC,SA=AB=AC=
BC,点D是BC边的中点,点E是线段AD上一点,且AE=3DE,点M是线段SD上一点,
(1)求证:BC⊥AM;
(2)若AM⊥平面SBC,求证:EM∥平面ABS.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,![]()
求证:GM∥平面ABFE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)求证:DE∥平面PBC;
(2)求证:DE⊥平面PAB.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱锥中S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.![]()
求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面
平面
,
是等腰直角三角形,
,四边形
是直角梯形,
∥AE,![]()
![]()
,
,
分别为
的中点.![]()
(1)求异面直线
与
所成角的大小;
(2)求直线
和平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,已知
的直径
,点
、
为
上两点,且
,
,
为弧
的中点.将
沿直径
折起,使两个半圆所在平面互相垂直(如图2).![]()
(Ⅰ)求证:
;
(Ⅱ)在弧
上是否存在点
,使得
平面
?若存在,试指出点
的位置;若不存在,请说明理由;
(Ⅲ)求二面角
的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com