设斜率为
的直线
交椭圆
:
于
两点,点
为弦
的中点,直线
的斜率为
(其中
为坐标原点,假设
、
都存在).
(1)求
×
的值.
(2)把上述椭圆
一般化为
(
>
>0),其它条件不变,试猜想
与
关系(不需要证明).请你给出在双曲线
(
>0,
>0)中相类似的结论,并证明你的结论.
科目:高中数学 来源:2014届浙江效实中学高二上期末考试理科数学试卷(解析版) 题型:解答题
已知
是椭圆
上一点,且点
到椭圆的两个焦点距离之和为
;
![]()
(1)求椭圆方程;
(2)设
为椭圆的左顶点,直线
交
轴于点
,过
作斜率为
的直线
交椭圆于
两点,若
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省台州市高三上学期期末文科数学试卷 题型:选择题
设斜率为
的直线
与椭圆
交于不同的两点,且这两个交点在
轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为
A、
B、
C、
D、![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省青岛市高三统一质量检测理科数学试卷 题型:解答题
已知椭圆
:
的左焦点
,若椭圆上存在一点
,满足以椭圆短轴为直径的圆与线段
相切于线段
的中点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知两点
及椭圆
:
,过点
作斜率为
的直线
交椭圆
于
两点,设线段
的中点为
,连结
,试问当
为何值时,直线
过椭圆
的顶点?
(Ⅲ) 过坐标原点
的直线交椭圆
:
于
、
两点,其中
在第一象限,过
作
轴的垂线,垂足为
,连结
并延长交椭圆
于
,求证:![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年天津市高三第三次月考文科数学 题型:解答题
已知
是椭圆
的左焦点,
是椭圆短轴上的一个顶点,椭圆的离心率为
,点
在
轴上,
,
三点确定的圆
恰好与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过
作斜率为![]()
的直线
交椭圆于
两点,
为线段
的中点,设
为椭圆中心,射线
交椭圆于点
,若
,若存在求
的值,若不存在则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com